Straßenverhältnisse im Herbst: 5 Herausforderungen für Autofahrer

Straße im Herbst

Die Umstellung von Sommerzeit auf Winterzeit findet zwar erst Ende Oktober statt, doch schon jetzt werden die Tage merklich kürzer. Der Pendelverkehr verlagert sich nun zunehmend in die Dämmerung. Mehrere Gefahrenquellen werden somit für Autofahrer zunehmend zum Thema:

  1. Wildwechsel
  2. Nebel
  3. Eis
  4. Laub
  5. Sonnenblendung

Wildwechsel

Besonders jetzt im Herbst ist zur Dämmerung viel Wild unterwegs. Da Wildtiere oft auf bekannten Wegen die Verkehrsstraßen der Menschen passieren, warnen Hinweisschilder an besonders gefährlichen Stellen vor dem Wildwechsel. Mit angepasster Fahrgeschwindigkeit sowie besonderer Bremsbereitschaft kann die Gefahr von Zusammenstößen zwischen Autos und Wildtieren zumindest minimiert werden, nichtsdestotrotz gibt es Jahr für Jahr zahlreiche Unfälle, allein in Österreich kamen in der Saison 2018/19 mehr als 75.000 Wildtiere durch eine Kollision mit einem Fahrzeug zu Schaden. Wenn Wild unmittelbar vor dem Auto über die Straße läuft, sollte man versuchen nur zu Bremsen und nicht zu lenken, da man sonst riskiert von der Straße abzukommen (was meist noch gefährlich ist).

Gefahr von Wildwechsel auf den Straßen.
Gefahr von Wildwechsel auf den Straßen. © pixabay.com

Nebel

In den kommenden Wochen nimmt die Nebelanfälligkeit kontinuierlich zu. Bekannte Nebelregionen sind beispielsweise der Bodenseeraum, der Donauraum, das Klagenfurter Becken und das Schweizer Mittelland. Die Sichtweite kann dabei drastisch abnehmen, besonders auf Schnellstraßen muss man also stets einen ausreichenden Sicherheitsabstand halten!

Raureif und Nebel
Reif und Nebel im Herbst. © Adobe Stock

Frost

Frost ist ein Wetterparameter, der erst zum Ende des Herbstes wirklich verbreitet auftritt, in Tal- und Beckenlagen kann es aber bereits jetzt Bodenfrost geben. Besonders auf Brücken kann es dann in den Nächten nach Durchzug einer Wetterfront glatt werden und in klaren Nächten kann sich Reif bilden. Dies ist besonders gefährlich, wenn man im Herbst noch mit Sommerreifen unterwegs ist, daher empfiehlt es sich bereits jetzt auf Winterreifen umzusteigen.

Rutschiges Laub

Herabfallendes Laub ist vor allem im Oktober und November ein Problem. Gerade nach windigen Tagen sowie kalten Nächten präsentieren sich viele Straßen übersät von bunten Blättern. In Kombination mit Regen oder Tau wirkt das nasse Laub wie ein natürliches Schmiermittel. Ein rechtzeitige Abnahme der Fahrgeschwindigkeit schafft Abhilfe. Allgemein bleiben die Straßen nach einem Frontdurchgang in dieser Jahreszeit immer länger feucht, da die Sonne kaum noch Kraft und Zeit hat, um den Boden zu erwärmen. Spätesten wenn der Winterdienst unterwegs ist, muss man häufiger die Scheiben putzen, man sollte also stets ausreichend Scheibenwaschflüssigkeit haben.

Laub auf den Straßen im Herbst.
Laub auf den Straßen im Herbst. © Adobe Stock

Sonnenblendung

Die Sonne geht immer später auf und immer früher unter, dadurch kann es am Weg zur Arbeit häufiger passieren, dass man beim Autofahren an manchen Stellen direkt in die Sonne schaut. Dies wirkt sich negativ auf die Sichtweite aus, im Extremfall kann sie sogar schlechter als bei Nebel sein! Selbst die Sonnenblende hilft manchmal nicht, sondern nur eine Verminderung der Fahrgeschwindigkeit.

Titelbild © Adobe Stock

Am 22. September ist astronomischer Herbstbeginn

Bunte Wälder im Herbst - pixabay

Der astronomische Herbst beginnt auf der Nordhalbkugel in der letzten Septemberdekade stets am 22., 23. oder 24. September. Er fällt immer auf das Äquinoktium, also auf den Tag, an dem der lichte Tag und die Nacht mit je 12 Stunden exakt gleich lang sind. In diesem Jahr wechselt die Sonne auf die südliche Seite des Himmelsäquators am 22. September um 15:30 Uhr. Auf der Südhalbkugel ist es übrigens andersrum, hier verabschiedet sich mit der gleichbedeutenden Tagundnachtgleiche der Winter und der Frühling kehrt ein.

Lange Nächte

Ende September und Anfang Oktober stellt sich oftmals ruhiges und stabiles Hochdruckwetter ein. Der Altweibersommer ist im deutschen Sprachraum eine sogenannte meteorologische Singularität, also eine regelmäßig wiederkehrende Wettererscheinung. Der Übergang in den Goldenen Oktober findet bei entsprechender Wetterlage fließend statt. Die Tageslänge nimmt in dieser Jahreszeit besonders schnell ab, so verlieren wir derzeit etwa 3 bis 4 Minuten Licht pro Tag.

Die Tage werden langsam wieder länger
Die Änderung der Tageslänge im Jahresverlauf.

Astronomische vs. meteorologische Jahreszeiten

Für uns Meteorologen ist der Herbst schon rund drei Wochen alt, er begann am 1. September. Warum es neben den astronomischen Jahreszeiten auch die sogenannten meteorologischen gibt, hat einen einfachen Grund. Meteorologische Statistiken über die Jahreszeiten lassen sich nur schwer erstellen, wenn der Beginn ebendieser mitten in einem Monat liegt und dann auch noch von Jahr zu Jahr schwankt. Deshalb wurde noch in Zeiten ohne Computer die Entscheidung getroffen, die meteorologischen Jahreszeiten immer an den Monatsersten beginnen zu lassen.

Quelle Titelbild: pixabay

Der Altweibersommer

Herbstsonne

Wissenschaftlich gesehen versteht man unter dem Altweibersommer eine sogenannte meteorologische Singularität. Also einen Witterungsabschnitt mit beständigem Hochdruckwetter im Frühherbst, der nahezu jedes Jahr eintritt. Der Altweibersommer findet meist in der zweiten Septemberhälfte oder im Oktober statt.

20 Grad und kühle Nächte

In dieser Zeit steigen die Temperaturen an den Nachmittagen regelmäßig über 20 Grad. Die Nächte sind oft aber schon empfindlich kühl, manchmal sogar frostig und immer häufiger breiten sich in den Tälern und Becken Frühnebelfelder aus. Auf den Bergen gibt es dafür oft den ganzen Tag strahlend blauen Himmel und perfekte Fernsicht. Besonders im Oktober sind die Temperaturen an manchen Tagen im Mittelgebirge sogar höher als im Tal.

Glänzende Spinnfäden

Die Herkunft des Wortes ist nicht sicher, man vermutet aber, dass der Altweibersommer seinen Namen den Spinnen zu verdanken hat, welche im Herbst durch die Luft segeln: Die Fäden von jungen Baldachinspinnen glänzen im Sonnenschein und erinnern dabei an das graue Haar alter Frauen. Häufig läuft man unbeabsichtigt in solche Fäden hinein. Mit „weiben“ bezeichnete man im Althochdeutschen übrigens das Knüpfen von Spinnweben. Wenn sich im Oktober das Laub langsam verfärbt, ist dann häufig auch vom goldenen Oktober die Rede (in Nordamerika „Indian Summer„).

Spinnenflug

Das Fliegen stellt für Baldachinspinnen eine erfolgreiche Strategie zur Verbreitung dar. Dafür produzieren sie einen Flugfaden, welcher ab einer bestimmten Länge vom Wind erfasst wird und die Spinne zum Abheben bringt. Dieser Vorgang wird „Luftschiffen“ oder „Spinnenflug“ genannt. Beim Transport durch die Luft können Baldachinspinnen Höhen von mehreren Tausend Metern erreichen und bis zu mehrere Hundert Kilometer weit fliegen. Viele Spinnen überleben ihre Reisen allerdings nicht: Die meisten landen auf dem Wasser, in ungeeigneten Lebensräumen oder werden von Vögeln gefressen.


Titelbild © Adobe Stock

Herbst: Unwettersaison am Mittelmeer

Blitz am Meer

Die Gewittersaison in Mitteleuropa geht durchschnittlich von Mai bis August. In dieser Jahreszeit ist die Luft aufgrund des höheren Wasserdampfgehalts energiereicher und der hohe Sonnestand sorgt tagsüber eine Erwärmung der Böden und damit auch der untersten Luftschichten, was eine Labilisierung zur Folge hat. Im Spätsommer und Herbst verlagert sich der Schwerpunkt der Gewittertätigkeit immer weiter südwärts.

Blitzdichte von 2008 bis 2012 im Juli und Oktober. © G. Anderson and D. Klugmann / MetOffice

Zunehmender Tiefdruckeinfluss

Im Sommer liegt Südeuropa häufig unter dem Einfluss der subtropischen Hochdruckgebiete, welche sich von den Azoren und Nordafrika nordwärts ausbreiten. Dies sorgt für trockenes und heißes Sommerwetter. Im Herbst verlagert sich der Jetstream im Mittel langsam südwärts und die Ausläufer des subtropischen Hochdruckgürtels werden nach Nordafrika abgedrängt. Die Tiefdrucktätigkeit nimmt also zu, weshalb der Herbst und in manchen Regionen auch der Winter im Mittelmeer auch die nasseste Zeit des Jahres darstellen.

In Barcelona ist der Oktober bzw. in Dubrovnik der November der nasseste Monat des Jahres.

Labile Schichtung der Luft

Der zunehmende Tiefdruckeinfluss führt im Zusammenspiel mit den milden Wassertemperaturen zu einer labilen Schichtung der Luft. Im folgenden Bild sieht man die mittlere, potentiell verfügbare Energie für Konvektion bzw. vertikale Luftmassenbewegung (CAPE), welche ein wichtiges Maß für Gewitter darstellt: Während im Sommer das Mittelmeer eher stabilisierend wirkt (das Wasser ist kühler als die Luft) und CAPE vor allem im Landesinneren wie etwa in Norditalien und Südosteuropa vorhanden ist, verlagert sich der Schwerpunkt im Herbst ins Mittelmeer und die angrenzenden Küstenregionen (das Wasser ist bei Kaltvorstoßen wärmer als die Luft).

Im Herbst ist die Luftschichtung im Mittelmeer labil.
Mittlere, potentiell verfügbare Energie für Konvektion im Juni und September. © Tilev-Tanriöver

Unwettersaison

Der Spätsommer und Frühherbst stellen vor allem im nördlichen Mittelmeer die gewitteranfälligste Zeit des Jahres dar. Im Laufe des Herbsts verschiebt sich der Schwerpunkt tendenziell in den zentralen Mittelmeerraum bzw. im Winter schließlich in den äußersten Süden und Osten. Dies spiegelt sich auch in den Ergebnissen einer Studie des ESWD wider, welche die Monate mit den meisten Tagen mit Tornados zeigt: In Mitteleuropa ist dies im Hochsommer der Fall, in Südeuropa dagegen im Herbst.

Im Mittelmeer gibt es im Herbst die meisten Tagen mit Tornados
Der Monat des Jahres mit den im Mittel meisten Tagen mit Tornados. © ESWD

Warmes Mittelmeer

Die Wassertemperaturen im Mittelmeer nehmen im Zuge des Klimawandels langsam zu, so gab es auch im Jahr 2021 nahezu durchgehend überdurchschnittliche Wassertemperaturen.

Mittlere Wassertemperatur pro Jahr im Vergleich zum Mittel (lila = 2021). © CEAM

Im langjährigen Trend seit 1982 kann man eine klare Zunahme der mittleren Wassertemperaturen beobachten, was für die angrenzenden Länder eine zunehmende Gefahr darstellt. Die Unwettersaison wird nämlich tendenziell länger und intensiver, denn je wärmer das Wasser im Herbst ist, desto mehr Energie steht für Unwetter zur Verfügung. Besonders bei auflandigem Wind unter Tiefdruckeinfluss besteht dann die Gefahr von Sturzfluten und Hochwasser. Mehr zum Thema Extremwetter und Klimawandel gibt es hier.

Entwicklung der Wassertemperatur im Mittelmeer im Vergleich zum Mittel 1982-2011. © CEAM

Italien besonders exponiert

Italien ist für Starkregen besonders anfällig, da es einerseits am Rande einer der wichtigsten Geburtsstätten für Tiefdruckgebiete im Golf von Genua liegt, und andererseits die Luft dank des umliegenden Mittelmeers oft viel Wasserdampf enthält. Erst am Donnerstag sorgten kräftige Gewitter am Flughafen Milano-Malpensa für kleinräumige Überflutungen.

Weiters gibt es aufgrund der geographischen Form des Landes immer Gebiete mit auflandigem Wind, unabhängig von der exakten Lage der Tiefs, dabei sorgen die Alpen und Apenninen stets für Staueffekte beim Niederschlag. Die Kombination aus Starkregen und Gebirge führt jährlich zu lokalen Sturzfluten. Neben Italien sind aber auch die Küstenregionen Südostspaniens inkl. Mallorca (wie etwa im Oktober 2018), Südfrankreichs sowie generell von Südosteuropa immer wieder betroffen.

Am Samstagmorgen gab es gebietsweise kräftige Gewitter. Satellitenbild- und Blitze um 8:30 Uhr.

Titelbild © Adobe Stock

Das Wetter im September in Österreich

Herbstlicht im September

Kalendarisch beginnt der Herbst erst am 22. September, in der Meteorologie zählt man den September bereits komplett zur dritten Jahreszeit. Besonders in der ersten Hälfte des Monats sollte der Sommer aber keineswegs unterschätzt werden. Temperaturen an die 30 Grad oder sogar darüber kommen in manchen Jahren vor. Bisherige Temperaturrekorde stammen aus dem Jahr 2015:

  • 36 Grad Pottschach-Ternitz (01.09.2015)
  • 35,6 Grad Waidhofen an der Ybbs (01.09.2015)
  • 35,5 Grad Gumpoldskirchen (17.09.2015)

Nichtsdestotrotz büßt man beispielsweise in Wien im September durchschnittlich vier Minuten pro Tag an Tageslänge ein. Sind zu Beginn des Monats noch 13,5 Stunden Sonnenschein möglich, stehen am Ende nur noch 11,5 Stunden zur Verfügung. Zudem ist die Intensität der Strahlung aufgrund des geringeren Sonnenstands herabgesetzt, im September kommt hierzulande ungefähr die gleiche Globalstrahlung wie im März an.

Frühnebel

Wegen der immer länger werdenden Nächte kann die Luft bodennah stärker auskühlen als noch in den Monaten davor. Somit bilden sich im Laufe des Monats bei windschwachen Bedingungen vermehrt Nebelfelder. Liegen in höheren Schichten noch dazu deutlich wärmere Luftmassen, sind bereits Hochnebelfelder möglich. Diese können sich von Tag zu Tag länger halten.

Nebel ist typisch für den Herbst.
Nebel ist typisch für den Herbst.

Föhn

Im September schaffen es zudem die ersten kräftigeren Tiefdruckgebiete bis nach Mitteleuropa und verstärken sich auf ihrem Weg über die noch aufgeheizten Meere weiter. Damit sind insbesondere in Norddeutschland erste sogenannte Herbststürme möglich, die an ihrer Rückseite kalte Luft bis an die Alpen strömen lassen können. Im Zusammenspiel mit Italientiefs sind damit auch erste Wintereinbrüche bis in höhere Tallagen der Alpen möglich. Andererseits kommt es im Vorfeld solcher Kaltfronten wieder häufiger zu Föhn in den Alpen, daher können die Temperaturgegensätze in dieser Jahreszeit sehr groß ausfallen.

Prognose

Derzeit berechnen die langfristigen Wettermodelle besonders über der Osthälfte Europas und in Russland deutlich unterdurchschnittliche Temperaturen im September, während die prognostizierten Abweichungen von den Britischen Inseln bis nach Algerien positiv sind. Österreich wären dabei vor allem im Westen überdurchschnittliche Temperaturen zu erwarten.  Beim Niederschlag deuten die Modelle in Österreich auf eine deutlich zu trockenen Monat hin.

Sommer 2021 in Ziffern: Anomalien, Extreme und neue Normalität

Sommerlicher Sonnenuntergang - pixabay.com

War der Sommer 2021 zu kühl oder doch zu warm? Diese Frage zu beantworten ist aufgrund des heuer neu eingeführten Vergleichszeitraums nicht so leicht zu beantworten – es kommt also  drauf an, was man als Vergleichsbasis heranzieht.

Österreichweit betrachtet war der Sommer im Vergleich zur nun gültigen Referenzperiode 1991-2020 um 0.5 Grad zu warm und landet somit auf Platz 8 unter den wärmsten Sommern der letzten 255 Jahre. Es gab aber beachtliche regionale Unterschiede: Denn im Westen fiel die Saison insgesamt eher durchschnittlich aus, in Bregenz sogar leicht unterdurchschnittlich. Die teils langanhaltende Hitze war nur im Südosten zu spüren, mit Abweichungen teils über +1 Grad.

Anomalie der Temperatur im Sommer 2021 im Vergleich zum langjährigen Mittel 1991-2020 - UBIMET
Anomalie der Temperatur im Sommer 2021 im Vergleich zum langjährigen Mittel 1991-2020 – UBIMET.

Ein weiterer, wichtiger Punkt ist allerdings zu beachten: Mehr oder weniger unwissend gewöhnen wir uns schon an die neue Normalität. Gleich 8 von den 10 wärmsten Sommern seit 1767 wurden in den letzten 21 Jahren verzeichnet (inklusive 2021), die ersten 5 sogar allesamt in den 2000er Jahren.

Platzierung Österreich (Messreihe seit 1767) Schweiz (Messreihe seit 1864) Deutschland (Messreihe seit 1881)
1 2003 2003 2003
2 2019 2015 2018
3 2015 2019 2019
4 2017 2018 1947
5 2018 2017 1994

Die wärmsten Sommer der Messgeschichte. Quelle: DWD.

Vor allem in den Jahren 2017, 2018 und 2019 war es im Sommer durchgehend ungewöhnlich heiß. Das sich rasch wandelnde Klima verändert dabei auch unsere Wahrnehmung, dies liegt in der menschlichen Natur. Nicht umsonst benutzen Klimatologen für die Berechnung von Anomalien die allerletzte, 30-jährige Klimareferenzperiode. Damit versucht man, neben statistischen Gründen auch solche Klima-Anomalien besser zu dem erlebten Klima der meisten Menschen in Verbindung zu setzen. Dies ändert aber nichts daran, dass es ständig wärmer wird.

Wie sich die Änderung der Referenzperiode auf die Interpretation auswirkt zeigt folgendes Beispiel: Die Temperaturabweichung für den Sommer 2021 im Vergleich zum langjährigen Mittel 1981-2010 (also, bezogen auf die „alte“ und damit auch „kühlere“ Referenzperiode) beträgt +1.2 Grad. Im Westen verschwinden dadurch die negativen Anomalien, im Südosten sind Abweichungen von teils über 2 Grad dabei.

Anomalie der Temperatur im Sommer 2021 im Vergleich zum langjährigen Mittel 1981-2010 - UBIMET
Anomalie der Temperatur im Sommer 2021 im Vergleich zum bisher gültigen langjährigen Mittel 1981-2010 – UBIMET.

Solche Unterschiede zwischen den Klimarefenzperioden werden noch deutlicher, wenn man die Anzahl an Hitzetagen (Tageshöchstwert über 30 Grad) betrachtet.

Hitzetage im Sommer 2021 - UBIMET
Hitzetage im Sommer 2021 – UBIMET.

Zwar liegt heuer die Anzahl an solchen heißen Tagen in der Westhälfte des Landes leicht unter dem Durchschnitt der letzten 30 Jahre (bis 2020), im Vergleich zu den älteren Klimareferenzperioden war aber der Sommer 2021 eher überdurchschnittlich! Dasselbe gilt natürlich auch im Südosten, wobei hier generell mehr Hitzetage als üblich verzeichnet wurden.

Anzahl der Hitzetage im Sommer 2021 (blau) im Vergleich zu den letzten vier Klima-Referenzperioden - UBIMET, ZAMG
Anzahl der Hitzetage im Sommer 2021 (blau) im Vergleich zu den letzten vier Klima-Referenzperioden – UBIMET, ZAMG

Der Anzahl an Tropennächten (Nächte mit Temperaturminimum über 20 Grad) war besonders im Osten und Südosten überdurchschnittlich. Im Westen gab es hingegen keine große Abweichungen. In der Wiener Innenstadt, wie üblich Hotspot des Landes, wurden heuer 25 Tropennächte verzeichnet. Zum Vergleich: In der Klimareferenzperiode 1981-2010 gibt es hier im Schnitt 16 solcher Nächte.

Tropennächte (Temperaturminimum über 20 Grad) im Sommer 2021 - UBIMET
Tropennächte (Temperaturminimum über 20 Grad) im Sommer 2021 – UBIMET.

Im Osten wurde dabei vielerorts die 37-Grad-Marke erreicht, während nach Westen zu die absoluten Höchstwerte des Sommers unter 35 Grad blieben.

Höchstwerte des Sommers 2021 - UBIMET
Höchstwerte des Sommers 2021 – UBIMET

Nur in der Wiener Innenstadt blieb die Temperatur den ganzen Sommer über jenseits der 10-Grad-Marke. Ansonsten gab es landesweit zumindest einmal einstellige Tiefstwerte, im Lungau und im Defereggental (wie üblich) auch Luftfrost bis in die Tallagen. Hier gab es somit im Sommer 2021 sowohl Sommertage als auch Frosttage (siehe Karte unten, grüne Regionen).

Tiefstwerte des Sommers 2021 - UBIMET
Tiefstwerte des Sommers 2021 – UBIMET
Spezielle Tage im Sommer 2021 - UBIMET
Spezielle Tage im Sommer 2021 – UBIMET

Vor allem die erste Sommerhälfte verlief oft sommerlich warm bis heiß, ehe im Laufe des Augusts allmählich wieder deutlich kühlere Luft ins Land gelangte. Die Spitzenwerte des Sommers 2021 liegen zudem im Bereich der normalen Schwankungsbreite der Jahreshöchstwerte der letzten 20 Jahre.

Österreichweite Tageshöchstwerte im Sommer 2021 - UBIMET, ZAMG
Österreichweite Tageshöchstwerte im Sommer 2021 – UBIMET, ZAMG
Jahreshöchstwerte österreichweit seit 2000 - UBIMET, ZAMG
Jahreshöchstwerte österreichweit seit 2000 – UBIMET, ZAMG

 

 

Titelbild: Sommerlicher Sonnenuntergang – pixabay.com

Feuchtkugeltemperatur: Wie viel Schwüle halten wir aus?

Hochsommer mit Hitzewelle

Eine für den Menschen wichtige, aber allgemein wenig bekannte Größe ist die Feuchtkugeltemperatur (englisch: wet-bulb temperature). Sie vereint Temperatur und relative Feuchte der Luft und gibt die tiefste Temperatur an, die sich durch Verdunstungskühlung erreichen lässt. Der Effekt der Verdunstungskühlung wird zum Beispiel in der Raumlufttechnik genutzt, um  die Temperatur in Innenräumen zu senken. Aber auch der menschliche Körper kühlt sich, um eine Körpertemperatur von ungefähr 36°C dauerhaft zu halten, über diesen Mechanismus – und genau das macht die Feuchtkugeltemperatur so interessant. Entscheidend dabei ist, dass die Verdunstung abnimmt, je feuchter die Luft ist.

Wie kühlen wir uns ab?

Über den Stoffwechsel erzeugt der Körper Energie und die Körpertemperatur steigt an. Um diesen Anstieg auszugleichen, gibt es mehrere Methoden. Einerseits nutzt der Körper das Prinzip des fühlbaren Wärmestroms. Ist der Körper wärmer als die Umgebungstemperatur, fließt die Luft vom warmen Körper zur kühleren Umgebungsluft. Die abgegebene Wärme wird dann über die Luftströmung abtransportiert. Ist die Lufttemperatur niedrig und es wird zu viel Energie an die Umgebung abgegeben, wirkt man zum Beispiel mit Kleidung entgegen.

Verdunstungskühlung

Ist die Umgebungstemperatur zu hoch oder die Luftströmung zu schwach, hat der menschliche Körper ein weiteres ausgeklügeltes System: Steigt die Körpertemperatur, zum Beispiel aufgrund von Bewegung, an, beginnt er zu schwitzen. Der Schweiß auf der Haut verdunstet und die dazu nötige Energie wird dem Körper entzogen (Verdunstungskühlung). Nun kommt aber die relative Luftfeuchtigkeit ins Spiel. Bei sehr hoher Luftfeuchtigkeit funktioniert dieser Mechanismus nicht mehr ausreichend, der Schweiß kann nicht mehr verdunsten und damit auch keine Körperwärme abtransportiert werden. Bei einer theoretischen Temperatur von 36°C und einer relativen Luftfeuchtigkeit von 100% könnte sich der Körper also nicht mehr kühlen und bei gleichbleibenden Bedingungen wäre der Tod die Folge.

Feuchtkugeltemperatur

An diesem Punkt kommt die Feuchtkugeltemperatur ins Spiel – sie gibt also in diesem Fall an, wie gefährlich die Kombination aus Temperatur und relativer Feuchte für den menschlichen Körper ist.  Werte im oberen 20er Bereich setzen dem Körper bereits zu und verhindern eine ausreichende Abkühlung. Steigt die Feuchtkugeltemperatur auf über 30 Grad werden die Bedingungen für den Menschen lebensbedrohlich. 35 Grad gelten als das theoretische Überlebenslimit selbst für gesunde Menschen. Man sagt also nicht umsonst, dass extreme Hitze in trockener Luft wie etwa in der Wüste für den Körper besser zu verkraften ist, als Hitze bei hoher Luftfeuchtigkeit.

Aktuelle Feuchtkugeltemperatur um 14 Uhr am 22. August 2021.

In Österreich kommt es an schwülen Tagen zu Werten zwischen 20 und 25, etwa am vergangenen Wochenende wurde in Wels vorübergehend eine Feuchtkugeltemperatur von 25 Grad gemessen. Noch höhere Werte in der näheren Umgebung treten häufig in Norditalien auf, so gab es hier vor einer Woche Werte zwischen 25 und 28 Grad. Vereinzelt wurden aber auch schon Spitzen um 31 Grad erreicht, wie etwa in Triest am 1. August 2020. Extremwerte von 35 Grad waren bislang weltweit äußerst selten, sie wurden aber bereits mehrfach in subtropischen Küstenregionen gemessen, wenn auch nur vorübergehend für wenige Stunden. In den vergangenen Tagen gab es etwa im Iran an der Küste  des Persischen Golfs Werte um 34 Grad.

ERA5-Reanalyse der höchsten jährlichen Feuchtkugeltemperatur (>27). © Science Advances, Vol. 3, no. 8

Höhere Werte durch Klimawandel

Durch den Klimawandel nimmt die Feuchtkugeltemperatur tendenziell zu, was besonders in Teilen Indiens, Pakistans und von Bangladesch zu einem großen Problem wird. Etwa im großen Indus-Tal und in der Gangesebene wären im Worst-Case-Szenario vier Prozent der Bevölkerung zumindest einmal zwischen 2071 und 2100 mit tödlichen Hitzewellen von über 35 Grad Feuchtkugeltemperatur konfrontiert bzw. 75% mit lebensbedrohlichen Hitzewellen von über 31 Grad Feuchtkugeltemperatur.

Mehr dazu in dieser Studie auf ScienceAdvances.

Mittlere jährliche max. Feuchtkugeltemperatur von 1976 bis 2005 (B) sowie die Prognosen für 2071 bis 2100 je nach Temperaturanstieg.

Ragweed: Pollensaison geht in die Schlussphase

Die Pollensaison geht in die Schlussphase

Die Pollensaison geht allmählich in die Schlussphase: Der Höhepunkt der Beifußblüte ist zwar bereits überstanden, dennoch muss besonders in den östlichen Landesteilen noch mit mäßigen Konzentrationen an Beifußpollen in der Luft gerechnet werden. Aktuell findet gebietsweise zudem die Blütezeit von Ragweed statt, besonders betroffen davon sind der Osten und Südosten des Landes. Weiters begünstigt das regenreiche Wetter auch die Verbreitung von Pilzsporen, welche in tiefen Lagen in teils hohen Konzentrationen auftreten.

Ragweed

Das beifußblättrige Traubenkraut, mittlerweile unter seinem englischen Namen Ragweed wesentlich bekannter, wurde Ende des 19. Jahrhunderts von Nordamerika nach Europa eingeschleppt und breitet sich seit den 1980er Jahren auch in Mitteleuropa aus. Bereits ab wenigen Pollenkörnern pro Kubikmeter Luft reagieren empfindliche Personen allergisch. Dieses Unkraut wächst an Straßenrändern, in Äckern oder auf Schuttplätzen, und ist verantwortlich für den „Herbstheuschnupfen“. Für Ragweedpollen spielt der Ferntransport eine wichtige Rolle: Besonders in der Pannonischen Tiefebene ist diese Pflanze stark ausgebreitet, somit treten besonders bei südöstlichem Wind wie etwa am Sonntag gesteigerte Belastungen auf. Zu Beginn der kommenden Woche ist mit Ankunft einer Kaltfront eine Entspannung in Sicht.

Saisonende im September

Die gute Nachricht zum Schluss: Im September neigt sich die Pollensaison langsam dem Ende zu, nach dem Abklingen der Blüte von Ragweed sorgen lediglich Pilzsporen noch für allergische Beschwerden.

Title Photo: anro0002 on VisualHunt / CC BY-SA

Klimamittel 1991-2020: Neue Zeiten brechen an

Das laufende Jahr (bis zum 17.08.) fällt im Vergleich mit dem „alten“ Klimamittel 1981-2010 österreichweit um 0.5 Grad zu warm aus (Wien sogar 0.6 Grad). Siehe hierzu Grafik 1, die rötlichen Farbtöne dominieren.

Temperaturabweichung 2021 (bis heute) vom Klimamittel 1981-2010 (zum Vergrößern anklicken bzw. -tippen).

Nimmt man aber die neue Klimareferenzperiode 1991-2020, dann wäre das Jahr bislang landesweit sogar leicht zu kühl ausgefallen (-0.1 Grad Anomalie, in Wien exakt +/- 0.0 Grad)! Nun dominieren auf einmal die grauen (neutralen) Farbtöne und die bläulichen, die auf eine negative Anomalie schließen lassen:

Temperaturabweichung 2021 (bis heute) vom Klimamittel 1991-2020 (zum Vergrößern anklicken bzw. -tippen).

Dieser Unterschied zwischen den beiden Referenzperioden spiegelt sich auch in der Juli-Anomalie wider. Österreichweit fiel der Juli gegenüber dem Mittel von 1981-2010 um 1.1 Grad zu warm aus. Im Vergleich zum neuen Mittel schmilzt die Abweichung auf nur noch +0.5 Grad zusammen.

Immer mehr Sommer- und Hitzetage

Kommen wir zu den Hitzetagen, also jenen Tagen mit einer Höchsttemperatur von 30 Grad oder mehr. Die jährliche Anzahl an Hitzetagen hat deutlich zugenommen. Im 1961-1990-Klimamittel waren es im Schnitt noch 3 solcher Tage im Jahr in Bregenz und 11 in Eisenstadt bzw. Sankt Pölten. Im allerneuesten Klimamittel 1991-2020 sind es in Bregenz nun 9, in St. Pölten 19 und in Eisenstadt sogar 21 Tage! Den größten Zuwachs an Hitzetagen zwischen 1961-1990 und 1991-2020 gab es dabei in Graz mit +350% (Zuwachs von 4 auf 18 Hitzetage).

Zahl der Hitzetage (>30 Grad) im Wandel der Klimamittelwerte (zum Vergrößern anklicken bzw. -tippen).
Zahl der Sommertage (>25 Grad) im Wandel der Klimamittelwerte (zum Vergrößern anklicken bzw. -tippen).
Zahl der Sommertage (>25 Grad) im Wandel der Klimamittelwerte (zum Vergrößern anklicken bzw. -tippen).

Frost- und Eistage rückläufig

Völlig konträr verhält sich der Trend bei den Eistagen, also all jenen Tagen mit ganztags weniger als 0 Grad. Deren Anzahl ist in den vergangenen Jahren generell weniger geworden, aber die Unterschiede sind hier etwas geringer als bei den Hitzetagen. Im 1961-1990-Klimamittel waren es noch 37 dieser Tage in Klagenfurt und 19 in Innsbruck. Im allerneuesten Klimamittel 1991-2020 sind es in Klagenfurt nun 27, in Innsbruck 11. Die größte Abnahme zwischen 1961-1990 und 1991-2020 gab es in Innsbruck mit -42%.

Zahl der Eistage (ganztags < 0 Grad) im Wandel der Klimamittelwerte (zum Vergrößern anklicken bzw. -tippen).
Zahl der Frosttage (Tagestiefstwert unter 0 Grad) im Wandel der Klimamittelwerte (zum Vergrößern anklicken bzw. -tippen).
Zahl der Frosttage (Tagestiefstwert unter 0 Grad) im Wandel der Klimamittelwerte (zum Vergrößern anklicken bzw. -tippen).

Extremwetter und Klimawandel

Unwetter mit Überflutungen - AdobeStock

Wenn man den Zeitraum seit der letzten Eiszeit betrachtet, ist es auffällig, dass es in den letzten 20.000 Jahren noch nie so hohe Temperaturen sowie einen so schnellen Temperaturanstieg wie aktuell gegeben hat. Global betrachtet haben wir in den vergangenen 100 Jahren einen Temperaturanstieg von rund 1,1 Grad erlebt: Das ist mehr als zehnmal schneller als der bislang markanteste Temperaturanstieg der letzten 20.000 Jahre von 1 Grad in etwa 1100 Jahren.


In Österreich lässt sich die Erwärmung besonders einfach an der Anzahl an Tagen mit mehr als 30 Grad beobachten: Wurden etwa im Mittel von 1961 bis 1990 in Wien durchschnittlich 9,6 Hitzetage pro Sommer verzeichnet, waren es im Mittel von 1991 bis 2020 bereits 20,9. Extreme Temperaturen über 35 Grad treten ebenfalls immer häufiger auf.

Auch in der Höhe wird es aber wärmer, was u.a. durch den Gletscherrückgang in den Alpen sichtbar wird. Weiters nimmt die Wahrscheinlichkeit für Hitzerekorde zu, wie zuletzt in Kanada oder in Sizilien, während Kälterekorde nur noch sehr selten auftreten.

Hitzerekorde werden immer wahrscheinlicher. © www.deutschesklimaportal.de

Die Ursache für die aktuelle Klimaveränderung seit der vorindustriellen Zeit ist die zunehmende Konzentration an Treibhausgasen. Eine Übersicht zum Einfluss von unterschiedlichen Faktoren wie Erdbahnparameter, Sonnenaktivität, Vulkanausbrüche und Treibhausgase auf unser Klima sind im folgenden Video zusammengefasst, ein paar Fakten zum Thema Sonne gibt es weiters auch hier: Sonnenaktivität und Klima.

Temperaturanstieg in den vergangenen 2000 Jahren bzw. dessen Ursachen seit 1850. © https://www.ipcc.ch/assessment-report/ar6/

Mehr Extremwetter

Die Forschung zu Klimawandel und Extremwetterereignissen hat in den vergangenen Jahren große Fortschritte gemacht. Noch vor wenigen Jahren lautete die typische Antwort zum Zusammenhang von Extremwetter und Klimawandel, dass einzelne Ereignisse nicht kausal auf den Klimawandel zurückführbar seien. Als uneingeschränkte und generelle Aussage ist diese Antwort allerdings nicht mehr korrekt, da man mittlerweile durchaus belegen kann, dass bestimmte Extremwetterereignisse durch den Klimawandel wahrscheinlicher bzw. intensiver geworden sind. Bei dieser sogenannten Attributionsforschung vergleicht man mit Computersimulationen die Wahrscheinlichkeit für Extremereignisse im aktuellen Klima sowie in jenem der vorindustriellen Zeit. Besonders gut funktioniert das für sommerliche Hitzewellen, so spielt der Klimawandel in Europa mittlerweile bei nahezu jeder Hitzewelle eine Rolle und auch beim Extremniederschlag lässt sich bereits eine Zunahme nachweisen. Nur bei punktuellen, kleinräumigen Ereignissen wie Tornados kann man praktisch noch keine Aussagen machen.

Niederschlagsextreme

Beim Niederschlag ist die Attribution kompliziert, da es auf vergleichsweise kleinen Flächen wie etwa jener Österreichs kaum möglich ist, statistisch signifikante Änderungen bei der Häufigkeit von punktuellen Extremniederschlägen zu erfassen (diese werden oft nicht direkt vom Messnetz erfasst). Weitere Infos dazu gibt es hier: Klimawandel und Extremniederschlag. Allgemein kommen aber zwei Faktoren zusammen: Einerseits vermutet mann, dass blockierte Wetterlagen im Zuge des Klimawandels häufiger werden, da sich die atmosphärische Zirkulation ändert, andererseits nimmt die Regenmenge in feuchtgesättigter Luft um etwa 7% bzw. pro Grad Erwärmung zu (der Wasserdampfgehalt der Atmosphäre ist weltweit bereits um 5% angestiegen). Besonders bei lokalen Gewittern kann es dadurch im Mittel zu deutlich mehr Niederschlag kommen, als es ohne Klimawandel der Fall wäre. Allgemein beschränkt sich der Großteils des Sommerniederschlags vor allem im Flachland tendenziell auf weniger, aber dafür sehr regenreiche Tage: Tatsächlich werden die Tage, an denen es mit leichter bis mäßiger Intensität regnet eher seltener, während Tage mit sehr großen Niederschlagsmengen in den vergangenen 30 Jahren häufiger wurden. Obwohl der Extremniederschlag zunimmt, steigt in manchen Regione aber gleichzeitig auch die Gefahr von Dürren an: Einerseits nimmt die Verdunstung in einem wärmeren Klima zu, andererseits entziehen die Pflanzen dem Boden aufgrund der längeren Vegetationsperiode mehr Wasser.

Fischer, E.M. and Knutti, R. (2016). Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Chang. 6 986–91

Für Tiefdruckgebiete spielen zudem auch die höheren Meerestemperaturen eine Rolle, ganz besonders bei tropischen Wirbelstürmen: Etwa bei Hurrikan Harvey im Jahr 2017 wurde berechnet, dass es in Houston 12 bis 22 Prozent mehr Regen gab, als es in einer Welt ohne Klimawandel der Fall gewesen wäre.

Schnee im Alpenraum

Die Anzahl an Tagen mit einer Schneedecke hat besonders in tiefen Lagen schon deutlich abgenommen: Die winterliche Nullgradgrenze ist in den letzten 50 Jahren im Mittel um etwa 250 m angestiegen. Im Flachland hat die Anzahl der Tage mit einer geschlossenen Schneedecke in den vergangenen 90 Jahren bereits um etwa 30% abgenommen. Mehr dazu hier: Schnee und Klimawandel in den Alpen.

Klimawandel in Arosa
Mittlerer Schneehöhenverlauf in Arosa: Der Schnee kommt später und schmilzt früher. © MeteoSchweiz

Weitere generelle Infos: Factsheet der Leopoldina „Klimawandel: Ursachen, Folgen und Handlungsmöglichkeiten“

Titelbild © AdobeStock

Golfstrom schwächer als je zuvor in den vergangenen 1000 Jahren

Wetterboje

Der Golfstrom ist eine starke Meeresströmung im Atlantik, welche erhebliche Mengen an warmen Wasser aus subtropischen Breiten nordwärts transportiert. So ist das Wasser am Nordende des Golfstroms vor Neufundland im Mittel noch 20 Grad warm, dort trifft er aber auf den kalten Labradorstrom und verliert dadurch an Kraft. Ab hier wird der Golfstrom auf seinem Weg in Richtung Westeuropa zum Nordatlantikstrom und teilt sich in zwei Äste auf. Der nördliche kühlt im weiteren Verlauf immer weiter ab, wird schwerer und beginnt schließlich abzusinken, um dann am Meeresgrund wieder südwärts zu strömen. Dies wird auch als atlantische Umwälzzirkulation (AMOC) bezeichnet.

Das Globale Förderband

Der Golfstrom und die atlantische Umwälzzirkulation sind ein Teil des globalen Förderbands, einem weltumspannenden Strömungssystem, welches von den Dichteunterschieden des Wassers innerhalb der Weltmeere angetrieben wird. Die Salzkonzentration des Wassers spielt dabei eine wichtige Rolle, da sie in Zusammenspiel mit der Temperatur die Dichte des Oberflächenwassers bestimmt. Allgemein ist kaltes und salzreiches Wasser schwerer als warmes und salzarmes Wasser, und neigt daher zum Absinken. Der Salzgehalt des Wassers wird durch die Bildung von Meereis erhöht, somit ist das Wasser in der Labrador- und Grönlandsee besonders salzig. Dies ist ein entscheidender Faktor um die atlantische Umwälzzirkulation und somit auch den Golfstrom anzutreiben.

Golfstrom im Nordatlantik. © shutterstock.us
Die AMOC im Nordatlantik. © shutterstock.us

Salzgehalt nimmt ab

Durch die globale Erwärmung kommt es im subpolaren Nordatlantik zu einer ansteigenden Zufuhr von Süßwasser, einerseits durch zunehmende Niederschlagsmengen, andererseits durch das Schmelzen des Grönland- und Polareises. Der abnehmende Salzgehalt erschwert in diesen Regionen das Absinken des Wassers und beeinträchtigt somit die gesamte atlantische Umwälzzirkulation. Um diese Abschwächung nachzuweisen, wurden in einer Studie vom Potsdamer-Institut für Klimafolgenforschung im Jahre 2018 die verfügbaren Messdatensätze der Meerestemperaturen seit dem 19. Jahrhundert mit einer Simulationsrechnung eines hochaufgelösten Klimamodells verglichen.

Golfstrom und beobachtete Änderung der Temperatur. © Caesar; Potsdam-Institut für Klimafolgenforschung
Golfstrom und beobachtete Änderung der Temperatur. © L. Caesar; Potsdam-Institut für Klimafolgenforschung

Die Ergebnisse zeigen eine Abkühlung des subpolaren Atlantiks südlich von Grönland und eine Erwärmung entlang der amerikanischen Ostküste, was laut den Forschern auf eine Abschwächung sowie Verschiebung des Golfstrom in Richtung Küste zurückzuführen ist. Die Änderung der Wassertemperaturen zeigt zudem, dass sich der Golfstrom seit Mitte des 20. Jahrhunderts um etwa 15% abgeschwächt hat. In einer weiteren neuen Studie wurden Bohrkerne von Sedimenten am Meeresgrund analysiert (paläoklimatischen Proxydaten) . Die Messgenauigkeit ist zwar geringer, dafür ermöglicht dies aber Rückschlüsse über einen wesentlich größeren Zeitraum von etwa 1.600 Jahren zu ziehen. Die analysierten Daten dieser Studie ergeben, dass der Golfstrom in den letzten 150 Jahren wesentlich schwächer geworden ist im Vergleich zu den vorherigen 1.500 Jahren.

Folgen für Europa

Die Auswirkungen des sich abschwächenden Golfstroms betreffen derzeit in erster Linie die Wassertemperaturen im Nordatlantik. Diese spielen allerdings eine wesentliche Rolle für die großräumige Luftdruckverteilung und somit auch für die allgemeine atmosphärische Zirkulation über Europa. So deuten die Ergebnisse einer weiteren Studie darauf hin, dass die veränderte Luftdruckverteilung besonders im Sommer Hitzewellen in Europa begünstigt, wie es etwa auch im Jahr 2015 der Fall war. Damals war der subpolare Atlantik so kalt wie noch nie zuvor seit Messbeginn und in Mitteleuropa gab es einen der bislang heißesten Sommer der Messgeschichte. Andere Forscher vermuten zudem, dass Winterstürme in Europa häufiger werden könnten.

Abweichung der Temperatur zum Mittel im 2015. © NOAA
Negative Temperaturanomalie über dem subpolaren Nordatlantik im 2015. © NOAA

Update 2021: Stabilitätsverlust

Wissenschaftler gehen davon aus, dass die Atlantische Umwälzströmung in der Erdgeschichte neben dem aktuellen starken Zustand auch einen wesentlich schwächeren Zustand eingenommen hat. Der Übergang zwischen diesen beiden Zuständen dürfte allerdings abrupt verlaufen, man spricht auch von einem Kipppunkt. Das Szenario einer bevorstehenden, abrupten Abschwächung der AMOC galt bislang als eher unwahrscheinlich, eine kürzlich veröffentliche Studie kommt allerdings zu dem Ergebnis, dass die Abschwächung der AMOC während des letzten Jahrhunderts wahrscheinlich mit einem Stabilitätsverlust verbunden sei. Das würde bedeuten, dass wir uns bereits einer kritischen Schwelle annähern, hinter der das Zirkulationssystem zusammenbricht. Eine Änderung in den schwachen Zirkulationsmodus würde langfristig weltweit schwerwiegende Folgen haben, das Klima in manchen Regionen würde regelrecht auf den Kopf gestellt werden.

Weiterführende Links:

Anmerkung: Dieser Artikel wurde im April 2018 veröffentlicht und im August 2021 ergänzt.

Verhaltensregeln bei Gewittern

Gewitter mit Blitz

Allgemein kündigt sich ein Blitz nicht an und kann manchmal auch mehrere Kilometer abseits eines Gewitterkerns einschlagen. Blitze schlagen zudem nicht immer an den höchsten Objekten ein und können durchaus auch mehr als einmal den selben Punkt treffen.

Gefahrenquelle Blitz

Bei  einem Gewitter besteht nicht nur die Gefahr, dass man direkt von einem Blitz getroffen wird, sondern auch das Risiko, in der Nähe eines Einschlags zu sein. Dabei springt der Blitz aufgrund der extrem hohen Spannung auf alle Stromleiter im unmittelbaren Umfeld über – schwere Verletzungen sind die Folge. Weiters gibt es auch die Gefahr der Schrittspannung: Wenn ein Blitz in unmittelbarer Nähe am Boden einschlägt, kann der Strom durch den menschlichen Körper fließen, wenn man im Zuge eines Schrittes den Boden an zwei unterschiedlichen Punkten mit unterschiedlichem elektrischen Potential berührt. Alleine in Deutschland und Österreich sterben jedes Jahr rund 10 Menschen an den Folgen eines direkten oder indirekten Blitzschlages! Besonders gefährdet sind meist Landwirte und Sportler (besonders Wanderer, Bergsteiger, Golfspieler, aber auch Fußballer und Wassersportler!)

10.000 Grad bei Blitzschlag

Bei einem Blitzschlag werden durchschnittliche Stromstärken von 5.000 bis 20.000 Ampere gemessen, vereinzelt werden aber sogar mehr als 250.000 Ampere erreicht. Die Temperatur kann direkt im Blitzkanal kurzzeitig auf mehrere 10.000 Grad steigen. Das explosionsartige Verdampfen des Wassers löst eine Schockwelle aus, die man in weiterer Folge als Donner wahrnimmt.

Wo findet man Schutz?

Wenn man sich im Freien befindet sollte man hohe sowie generell stromleitende Gegenstände meiden sowie fern vom Wasser bleiben. Am besten ist der Unterschlupf in einem Haus mit verschlossenen Fenstern und Türen oder im Auto. Ist man im Freien, sollte man folgende Notmaßnahmen beachten:

  • Auf den Boden kauern, am besten in einer Mulde oder Senke. Die Beine müssen dabei eng beieinander stehen um die Schrittspannung gering zu halten. Im Notfall ist es jedenfalls besser zu hüpfen, als zu laufen.
  • Niemals unter einzelstehenden Bäumen (ganz egal welche Baumart) oder Stromleitungen Schutz suchen!
  • Im Gebirge: Von Graten und Gipfeln fernhalten und Stahlseile und Skilifte meiden. Nahe einer Felswand gibt es ein relativ sicheres Dreieck, dessen Seitenlänge am Boden der Höhe der Wand entspricht.
  • Wenn man keinen Donner mehr hört, bedeutet das nicht, dass das Gewitter vorbei ist. Blitze können auch im Umfeld der Gewitterwolke in den Boden einschlagen. Deshalb ist es auch wichtig, dass man nach dem vermeintlich letzten Donner noch für längere Zeit in Sicherheit bleibt.
  • Stets lokale Wetterberichte lesen und die Tour entsprechend planen (nicht auf Apps verlassen). Bei einer erhöhten Gewitterneigung sollte man nur kurze Touren mit Ausstiegs- oder Schutzmöglichkeiten durchführen.
  • Stets den Himmel beobachten: So erkennt man, ob sich in der Nähe mächtige Quellwolken bzw. Gewitter entwickeln.

 

Alle Jahre wieder: Die Hundstage

Die Zeit vom 23. Juli bis zum 23. August ist landläufig als Hundstage bekannt und gilt als die heißeste Zeit im Jahr. Ihren Ursprung haben diese Tage im alten Ägypten rund zweitausend vor Christus: Rund um den 23. Juli wurde damals nämlich des hellste Stern Sirius am Morgenhimmel  sichtbar. Bei den alten Ägyptern war dieses astronomische Ereignis von besonderer Bedeutung, da zu diesem Zeitpunkt oftmals die Nilflut einsetzte. Außerdem glaubten die Menschen, dass der hellste Stern am Morgenhimmel als „zusätzliche“ Sonne für die sommerliche Hitze verantwortlich sei. Die Dauer der Hundstage erklärt sich daraus, dass vom ersten Auftauchen des Sterns in der Morgendämmerung bis zum vollständigen Erscheinen des Sternbilds etwa ein Monat vergeht.

Aufnahme vom Thiersee im Kufsteinerland © QYINT, Niclas Weninger

Hundstage und Hitze in Europa: Zufall

Im Alpenraum ist die Zeit während der Hundstage tatsächlich die heißeste Phase des Jahres: Häufig erleben wir von Ende Juli bis Mitte August sehr heiße Tage und warme, teils sogar tropische Nächte. Auch die meisten Hitzerekorde in Mitteleuropa stammen aus dieser Zeit. Mit dem Sternbild „Großer Hund“ hat das aber nichts zu tun, da sich das Erscheinen von Sirius im Laufe der Jahrtausende verschoben hat: Mittlerweile taucht Sirius erst ab Ende August am Morgenhimmel auf, zudem wird das gesamte Sternbild hierzulande erst im Winter vollständig sichtbar.

@ https://stock.adobe.com

Die Temperaturen in Mitteleuropa präsentieren sich derzeit allerdings eher gedämpft, nur im Südosten Österreichs bleibt es weiterhin hochsommerlich heiß.

 

Titelbild: Aufnahme vom Thiersee im Kufsteinerland © QYINT, Niclas Weninger

 

Höhentief bringt unbeständiges Sommerwetter

Höhentiefs liegen in mehren Kilometern Höhe und zeichnen sich durch niedrige Temperaturen im Vergleich zur Umgebung aus. Deren Entstehung wird oft durch Verwirbelungen des polarumlaufenden Jetstreams begünstigt, Meteorologen sprechen auch von einem Abschnürungsprozess bzw. einem „Cut-Off“. Solche Höhentiefs verlagern sich nicht mit der Höhenströmung, sondern werden durch die umgebende Luftdruckverteilung beeinflusst. Oft verharren sie wie ein Kreisel an Ort und Stelle.

Kaltlufttropfen

Ehemalige Tiefdruckgebiete bzw. Höhentiefs können sich zu sog. Kaltlufttropfen umwandeln, wenn das Bodentief durch Reibung oder Warmluftzufuhr aufgelöst wird und das Höhentief stattdessen erhalten bleibt. Tatsächlich befinden sich Kaltlufttropfen sogar oft im Randbereich eines Bodenhochs. In einem begrenzten Gebiet von etwa 100 bis 1000 Kilometern befindet sich dabei deutlich kältere Luft als in der Umgebung.

Am Donnerstag liegt der Kaltlufttropfen und somit die kälteste Luft in 500 hPA direkt über Westösterreich

Da diese kalte Anomalie aber nur in der oberen Hälfte der Troposphäre ausgeprägt ist, scheinen diese Gebiete nicht auf den Bodenwetterkarten auf. Kaltlufttropfen werden durch die bodennahe Strömung „gesteuert“, d.h. sie verlagern sich immer mit dieser zumeist relativ schwachen Strömung.

Labile Schichtung der Luft

Ein Höhentief wirkt sich merklich auf das tägliche Wettergeschehen aus, denn Höhenkaltluft sorgt für eine verstärkte vertikale Temperaturabnahme und somit für eine Destabilisierung der Atmosphäre. Besonders im Frühjahr und Sommer entstehen unter dem Einfluss der Höhenkaltluft Quellwolken, welche im Tagesverlauf zu Schauern und Gewittern heranwachsen. Die Lebensdauer von Kaltlufttropfen ist allerdings meist auf ein paar Tage bis etwa eine Woche begrenzt, da sich die Temperaturunterschiede in der Höhe allmählich ausgleichen.

Vorhersagegenauigkeit

Wenn Höhenkaltluft im Spiel ist, nimmt die Vorhersagbarkeit des Wetters etwas ab: Einerseits werden Kaltlufttropfen durch die bodennahe Strömung gesteuert, was sich negativ auf die Qualität von Modellprognosen auswirkt, andererseits sorgt die konvektive Wetterlage für große Unterschiede auf engem Raum. Vor allem räumlich detaillierte Prognosen, wie etwa jene von Wetter-Apps, sind bei solchen Wetterlagen also mit Vorsicht zu genießen.

10 Tipps für einen guten Schlaf trotz Hitze

Hitze

Die empfohlene Zimmertemperatur von knapp über 20 Grad lässt sich in den Sommermonaten ohne Klimatisierung häufig nicht erreichen. Dennoch gibt es ein paar Tricks um die derzeitigen Tropennächte in den Ballungsräumen möglichst ausgeruht zu überstehen.

Diese Tipps helfen

  1. Richtiges Lüften. Idealerweise sollte nur dann gelüftet werden, wenn die Außentemperatur niedriger ist als die Temperatur im Haus oder der Wohnung. Typischerweise empfiehlt sich das Lüften ab dem späten Abend bis zum nächsten Vormittag. Ist eine Querbelüftung, zum Beispiel von West nach Ost, in der Wohnung möglich, sollte diese genutzt werden.
  2. Tagsüber bleiben Vorhänge und Jalousien geschlossen. Jegliche Sonneneinstrahlung treibt die Temperaturen in die Höhe. Besonders geeignet sind Außenjalousien, da sie nur etwa 25% der Sonnenenergie nach innen durchlassen, Innenjalousien dagegen etwa 75%. Behelfsmäßig kann man sonst auch ein Leintuch von außen vor die Fenster hängen.
  3. Trotz hoher Raumtemperaturen sollte auf dünne Bettwäsche nicht verzichtet werden, der Körper kühlt sonst zu sehr aus. Das beste Material ist Baumwolle: Es nimmt den Schweiß auf.
  4. Falls möglich, sollte auf kühlere Räume ausgewichen werden. In Einfamilienhäusern gibt es zwischen den verschiedenen Etagen meist große Temperaturunterschiede, mit den höchsten Werten unter dem Dach.
  5. Um der Hitze im Haus gänzlich zu entfliehen, kann auf den Balkon oder den Garten ausgewichen werden. Das ist allerdings nicht jedermanns Sache.
  6. Ventilatoren bringen zwar eine Abkühlung, in der Nacht besteht aber die Gefahr der Erkältung. Daher sollte man ihn nicht direkt auf das Bett richten.
  7. Vor allem im Schlafzimmer, aber auch in den anderen Räumen sollten elektrische Geräte wie Fernseher oder Computer in den Standby-Modus versetzt oder am besten gleich ganz ausgeschaltet werden. Jeder Stromverbraucher ist eine Wärmequelle bzw. eine kleine Heizung.
  8. Als eine langfristige Möglichkeit zum besseren Umgang mit der Wärme empfiehlt sich eine Matratze mit einer Sommer- und einer Winterseite.
  9. Schwere, sprich fettreiche Speisen sollten vermieden und untertags reichlich Wasser getrunken werden, um in der Nacht eine ausreichende Flüssigkeitsversorgung des Körpers zu gewährleisten.
  10. Ungeeignet für eine ruhige Nacht sind alkoholische Getränke. Sie sorgen für einen leichten Schlaf und trocknen den Körper aus.

Wir wünschen allen Lesern und Leserinnen erholsame Nächte!

Titelbild © N. Zimmermann

Gewitter: Von der Einzelzelle bis zur Superzelle

Die Superzelle vor der Ankunft in Wien © M. Spatzierer

Der Juni war in Österreich überdurchschnittlich gewittrig, besonders im Norden des Landes gab es außergewöhnlich viele und kräftige Gewitter, wir berichteten darüber bereits hier: Mehr als 400.000 Blitze im Juni. Allgemein spricht man von einem Gewitter sobald ein Donner hörbar ist, allerdings können Gewitter eine sehr unterschiedliche Struktur aufweisen. Je nach Windscherung und vertikaler Schichtung der Atmosphäre weisen sie zudem eine unterschiedliche Intensität und Lebensdauer auf.

Einzelzelle

Für die Entstehung von Gewittern sind grundsätzlich drei Zutaten notwendig: Ausreichend Feuchtigkeit in der Grundschicht der Atmosphäre, eine genügend starke Temperaturdifferenz mit der Höhe und einen Auslöser (wie beispielsweise eine Kaltfront oder eine bodennahe Windkonvergenz). Wenn diese Voraussetzungen gegeben sind und Luft aufsteigt, dann beginnt der enthaltene Wasserdampf zu kondensieren. Die dadurch freigesetzte Energie sorgt für weiteren Auftrieb, wodurch sich die allzubekannten Gewitterwolken – auch Cumulonimbus genannt – bilden. Durch das Auf- und Abwirbeln kollidieren Eispartikel miteinander, was zu einer Ladungstrennung führt. Dadurch überwiegt in den unteren und oberen Wolkenschichten eine positive Ladung bzw. in den mittleren Wolkenschichten eine negative Ladung. Durch Blitzentladungen kann dieser Ladungsunterschied ausgeglichen werden.

Ein Einzelzellengewitter. © NOAA

Der einsetzende Niederschlag wird von Verdunstungsprozessen begleitet, wodurch Abwinde entstehen. Da Auf- und Abwind jedoch räumlich nicht genügend voneinander getrennt sind, behindern die Abwinde die Aufwinde und kappen die Zufuhr weiterer „Gewitternahrung“ ab. Das Gewitter schwächt sich ab und zerfällt. In der Regel weisen solche Gewitter eine Lebensdauer von etwa 30 Minuten auf und werden von Platzregen sowie manchmal auch von kräftigen Böen und kleinem Hagel begleitet.

Gewitter
Eine alleinstehendes Gewitter mit der typischen Amboss-Struktur. © AdobeStock

Multizellen

Gewitter weisen oft eine zumindest schwach ausgeprägte mehrzellige Struktur auf, damit werden sie per Definition zu einer Multizelle. Diese Gewitter sind insgesamt langlebiger als ordinäre Gewitter und können bei passenden Bedingungen zu großen Gewitterkomplexen heranwachsen: Wenn die Winde in der Höhe eine stärkere Windgeschwindigkeit aufweisen als die Winde in Bodennähe (also wenn es vertikale Windscherung gibt), können bei einem Gewitter die Aufwindzone von der Abwindzone getrennt werden. Dadurch wird die Zufuhr an feuchtwarmer Luft nicht unterbrochen. Bei solchen Gewitterkomplexen kann man in der Regel mehrere Gewitterzellen in unterschiedlichen Entwicklungsstadien beobachten: Vollständig ausgebildete Gewitter, sich neu entwickelnde Zellen sowie auch bereits zerfallende Zellen.

Vereinfachte Dartstellung der Konvektion innerhalb einer Gewitterwolke. © Nikolas Zimmermann
Diese Einzelzelle hat das Potential zur Multizelle heranzuwachsen, da der verwehte Eisschirm  auf etwas Windscherung hindeutet. © N. Zimmermann
Ein Multizellengewitter. © NOAA

Je nach Windscherung, Luftschichtung sowie auch topographischem Einfluss können Multizellen sehr unterschiedliche Strukturen und Verlagerungsrichtungen aufweisen, beispielsweise können sie sich manchmal sogar entgegen der vorherrschenden Windströmung in mittleren Höhen verlagern. Bei starker Windscherung entwickeln sich manchmal sogar mehrere hundert Kilometer lange Gewitterlinien. Multizellen können zu Starkregen, Sturmböen und Hagel führen.

Quellwolken eines Gewitters - pixabay.com
Eine Multizelle. © pixabay.com
Gewitterlinie am IR-Satellitenbild (inkl. Blitze) am 29. Juni 2021.

Superzellen

Superzellen sind deutlich seltener als ordinäre Gewitter und Multizellen, sie sorgen aber oft für erhöhte Unwettergefahr. Es handelt sich dabei um meist langlebige, kräftige und alleinstehende Gewitter, welche einen beständigen rotierenden Aufwind aufweisen („Mesozyklone“). Superzellen entstehen bei ausgeprägter Windscherung: Bei einer starken vertikalen Windzunahme bilden sich nämlich quer zur Strömung horizontal liegende Luftwalzen. Der Aufwind eines entstehenden Gewitters saugt diese Luftwalze ein und kippt ihre Achse in die Senkrechte, wobei sich der Drehimpuls nach und nach auf den gesamten Aufwindbereich überträgt. Auf Zeitraffern lässt sich diese dadurch erkennen, dass die Gewitterwolke um eine vertikale Achse rotiert.


Die Zufuhr feuchtwarmer Luft wird dabei durch den räumlich getrennten Abwindbereich, in dem der Niederschlag ausfällt, nicht gestört. Superzellen können für schwere Sturmböen, Starkregen, großen Hagel und in manchen Fällen auch für Tornados sorgen.  Superzellen präsentieren sich aber je nach Feuchtigkeitsangebot unterschiedlich, so gibt es LP-Superzellen (low precipitation, siehe auch Zeitraffer oben), klassische Superzellen und HP-Superzellen (high precipitation, siehe Zeitraffer unten).


Titelbild: Superzelle über Wien am 12. August 2019 © M. Spatzierer

Konvektion in der Atmosphäre

Die Quellwolke eines Gewitters.

Die Sonneneinstrahlung erwärmt die verschiedenen Oberflächen wie beispielsweise Wasser, Acker und Wald unterschiedlich schnell bzw. stark. Dies wirkt sich direkt auf die Temperatur und somit auch auf die Dichte der bodennahen Luft aus. Die wärmeren Bereiche der bodennahen Luft sind leichter als die Umgebungsluft, somit steigt die Luft dort auf. Der Auftrieb klingt erst dann wieder ab, wenn die Luft im Aufwindbereich die gleiche Temperatur wie jene der Umgebungsluft besitzt. Danach sinkt die Luft seitlich wieder ab. Die abwärtsgerichtete Strömung ersetzt schließlich die Luft in den unteren Schichten und es der Kreislauf der Konvektion wird abgeschlossen. Ein typisches Beispiel für einen abgeschlossenen Konvektionskreislauf stellt das Land-See-Windsystem dar.

Eine Seewind-Konvergenz löst Gewitter auf Kuba aus.
Eine Seewind-Konvergenz löst Gewitter auf Kuba aus.

Seewind und Gewitter

Die Seebrise stabilisiert die Luft in Küstennähe, weiter im Landesinneren kann das Zusammenströmen von Seewind und allgemeinem Wind hingegen zur Auslösung von Schauern und Gewittern führen. Dies tritt besonders häufig auf größeren Inseln und Halbinseln auf, wie beispielsweise in Istrien (Kroatien). Gelegentlich kann man dies aber auch im Bereich der Nord- und Ostsee beobachten.

Seewind an der Adria. © EUMETSAT / UBIMET
Seewind sorgt an den Küsten oft für wolkenlose Bedingungen. © EUMETSAT / UBIMET

Thermik

Im Sommerhalbjahr kann die Sonnenstrahlung regelrechte Thermikschläuche verursachen, die beispielsweise Segelflieger zum Auftrieb nutzen. Das ist auch der Grund, warum Paragleiter oft über sonnenbeschienenen Berghängen enge Kreise ziehen. Die Folgen aufsteigender Luft sind oftmals Quellwolken, welche bei einer stabilen Schichtung der Luft hochbasig und klein bleiben.

Paragleiter am Alpenrand. © www.foto-webcam.eu
Paragleiter am Alpenrand. © www.foto-webcam.eu

Cumulonimbus

Wenn die bodennahe Luft jedoch sehr feucht und die Luftschichtung labil ist, dann können die Quellwolken rasch zu Schauern und Gewittern heranwachsen.  An der Obergrenze der Troposphäre, also jenem Bereich der Atmosphäre in dem sich unser Wetter abspielt, befindet sich eine Temperaturinversion. Die stabile Schicht stellt eine unüberwindbare Barriere für Gewitterwolken dar, weshalb sich die Quellwolke dort seitlich ausbreitet und die charakteristische Ambosswolke entsteht (Cumulonimbus incus; siehe auch Titelbild).

Vereinfachte Darstellung der Konvektion innerhalb einer Gewitterwolke. © Nikolas Zimmermann
Konvektion innerhalb einer Gewitterwolke. © Nikolas Zimmermann

Das Wetter am Siebenschläfertag sieben Wochen bleiben mag

Siebenschläfer schaut wie das Wetter wird

Der Siebenschläfertag ist ein altbekannter Lostag in der Meteorologie, welcher sich in zahlreichen Bauernregeln widerspiegelt. Das Wetter vom 27. Juni soll demnach den Trend für die nächsten 7 Wochen setzen. Anbei eine kleine Auswahl an Bauernregeln:

  • Das Wetter am Siebenschläfertag sieben Wochen bleiben mag.
  • Scheint am Siebenschläfer Sonne, gibt es sieben Wochen Wonne.
  • Wie’s Wetter am Siebenschläfertag, so der Juli werden mag.
  • Ist der Siebenschläfer nass, regnet’s ohne Unterlass.
  • Schlafen die Siebenschläfer im Regen, wird’s ihn noch sieben Wochen lang geben.

Meteorologischer Hintergrund

Tatsächlich gibt es im Hochsommer eine statistisch nachweisbare Erhaltungstendenz von Wetterlagen im Alpenraum. Für diese meteorologische Singularität ist allerdings nicht nur ein bestimmter Tag relevant, da sie allgemein oft für die letzte Juniwoche bzw. die erste Juliwoche zutrifft. Durch die gregorianische Kalenderreform findet der Tag eigentlich auch erst etwa 10 Tag später statt. Auf die erste Juliwoche trifft diese Singularität in Süddeutschland und im Alpenraum etwa 60 bis 80% der Fälle zu. Im maritim geprägten Klima Norddeutschlands ist dies hingegen deutlich seltener der Fall.

Weichenstellung

Etabliert sich Ende Juni bzw. Anfang Juli somit eine stabile Hochdruckzone über Europa, stehen die Chancen gut, dass sie bis weit in den Juli hinein erhalten bleibt. Das gleiche gilt allerdings auch umgekehrt: Liegt der Jetstream weiter südlich, so ist der Weg frei für Tiefdruckgebiete in Richtung Mitteleuropa und anhaltend wechselhafte Bedingungen sind vorprogrammiert.

Wechselhafte Woche

Derzeit deuten die Modelle in der kommenden Woche auf eher wechselhaftes und mäßig warmes Sommerwetter hin. Zwar wird es v.a. am Montag und Dienstag noch einmal heiß, dann aber setzt sich maritim geprägte Luft aus Westeuropa durch. Eine neuerliche Hitzewelle ist jedenfalls nun erst einmal nicht mehr in Sicht! Man kann also wie bei jeder Bauernregel nur abwarten und schauen, was uns der restliche Sommer noch bringt.

Die Schafskälte

Schafskälte

Meteorologisch gesehen ist die Schafskälte eine sogenannte Singularität, also ein Witterungsereignis, welches in einem begrenztem Zeitraum immer wieder an einem ähnlichen Datum auftritt. Bei der Schafskälte handelt es sich um einen Kälterückfall in Mitteleuropa im Frühsommer, meist im Zeitraum zwischen dem 4. und 20. Juni mit einem Maximum der Häufigkeit um den 11. Juni. Eine ähnliche Singularität stellen im Mai die Eisheiligen dar.

Affenhitze statt Schafskälte

Dieser Kaltlufteinbruch findet allerdings nicht in jedem Jahr statt, beispielsweise fällt die Schafskälte in diesem Jahr völlig aus. Am Wochenende zieht zwar eine Kaltfront über Mitteleuropa hinweg,  diese ist aber nur schwach ausgeprägt. Kommende Woche steigen die Temperaturen zudem neuerlich an, in der ersten Wochenhälfte sind vor allem am Oberrhein und im Wesatlpenraum Höchstwerte um 30 Grad in Sicht, in der zweiten Wochenhälfte ist  dann vor allem im Ostalpenraum die erste kleine Hitzewelle der Saison in Sicht mit Spitzenwerte teils um 35 Grad.

Kälte und Schafe?

Allgemein ist die Schafskälte weniger im Flachland sondern vielmehr in höheren Lagen im Gebirge von Bedeutung, was auch zum Namen dieser Wetterlage führt. So können plötzliche Kälteeinbrüchen für frisch geschorene Schafe durchaus bedrohlich sein, besonders für Muttertiere und Lämmer in hochgelegenen Almgebieten. In den Nordalpen gehen solche Kaltlufteinbrüche manchmal auch mit Schnee bis in mittlere Höhenlagen einher.

Unregelmäßiges Ereignis

Im Laufe des Junis erfassen zwar immer wieder kühle Luftmassen Mitteleuropa, allerdings gibt es kein fixes Datum für die Schafskälte. So führten Auswertungen der Jahre 1881 bis 1947 mit einer hohen Wahrscheinlichkeit von über 80 Prozent zu einer Häufung um den 11. Juni, allerdings auch mit einer Streuung vom 4. bis zum 20 Juni. Etwas neuere Analysen aus den Jahren 1986 bis 1991 ergeben für das Auftreten dieser Singularität im Mittel die Zeit vom 11. bis zum 20 Juni. Auch eine Analyse der MeteoSchweiz zeigt, dass die Analyseperiode für den Zeitpunkt sowie die Dauer der Schafskälte eine wesentliche Rolle spielt, so war sie etwa in Davos am stärksten im Zeitraum 1931 bis 1960 ausgeprägt.

Schaf im Schnee
Schaf friert im Winter

Titelbild © Adobe Stock

Flash Floods und Vermurungen

Überschwemmung Hochwasser Gewitter

Unter einer Sturzflut (flash flood) versteht man eine plötzliche Überschwemmung. Dabei ist ganz allgemein gesprochen mehr Wasser vorhanden, als im Boden versickern oder von einem Fluss abgeleitet werden kann. Im Berg- und Hügelland bahnen sich dann große Wassermassen mit hoher Geschwindigkeit ihren Weg hangabwärts – oft in Zusammenspiel mit Vermurungen – und im Flachland kommt es zu Überflutungen.

Sturzfluten

Ursachen einer Sturzflut sind in erster Linie große Regenmengen innerhalb kürzester Zeit. Das geschieht speziell im Sommer bei nur langsam ziehenden Gewitterzellen, die sich dann an Ort und Stelle ausregnen. Kommt es nach einem solchen Gewitterguss innerhalb von maximal sechs Stunden zu einer verheerenden Überschwemmung, spricht man von einer Sturzflut.

Sturzfluten treten vor allem bei Gewittern auf, manchmal können aber auch plötzlich kollabierende Dämme an einem Fluss eine Sturzflut weiter stromabwärts auslösen. Weiters kann auch eine abrupt einsetzende Schneeschmelze in den Bergen mitunter zu einer Sturzflut führen.

Flash Floods in den USA

Besonders anfällig für eine Sturzflut sind trockene und tief gelegene Gebiete. Durch häufige Trockenheit ist der Boden nämlich meist stark versiegelt, dass praktisch das gesamte Regenwasser oberflächlich abläuft. Auf der Erde trifft diese gefährliche Kombination aus Trockenheit und schweren Gewittern im Sommer speziell im Südwesten der USA auf: Die Canyons in Arizona, Utah und Nevada sind berüchtigt für ihre zerstörerischen flash floods. Oft kreuzen Wanderwege sowie spärlich befahrene Straßen die ausgetrockneten Flussbetten, immer wieder werden hier Menschen von Sturzfluten überrascht. Dabei kann auch ein kilometerweit entferntes – und womöglich gar nicht sichtbares – Gewitter eine tückische Sturzflut auslösen.

Gefahren

Aufgrund ihrer Plötzlichkeit sind flash floods extrem gefährlich. Das Potential dafür kann man zwar schon Tage im Voraus erkennen, wo es aber tatsächlich zu einer Sturzflut kommt, zeigt sich oft erst während des Ereignisses: Nicht nur die Intensität eines Gewitters spielt nämlich eine Rolle, sondern auch dessen Verlagerungsrichtung und -geschwindigkeit, die Bodenversiegelung sowie auch die Form des Einzugsgebiet eines darunterliegenden Gewässers.

Das Auto bietet keinen Schutz, da schon eine 50 cm hohe Flutwelle locker ausreicht, um ganze Fahrzeuge samt Insassen wegzuspülen. Erschwerend kommt hinzu, dass eine Sturzflut oft nicht nur aus Wasser besteht: Die Flutwelle reißt größere Gegenstände wie Baumstämme und Steine mit – diese gefährden Menschen zusätzlich. Alleine in den USA sterben pro Jahr durchschnittlich mehr als 100 Menschen bei einer Sturzflut, also mehr als durch Blitzschlag, Tornados und Hurrikane! Auch in Europa kommt es jährlich zu Todesopfern, ganz besonders in den Herbstmonaten im Mittelmeerraum.



Mini-Sonnenfinsternis zum Sommerbeginn

Der Sonne fehlt ein Stück

Angebissener Apfel

Um 11:52 MESZ berührt der Rand des Mondes die Sonnenscheibe, gut eine halbe Stunde später hat er etwa ein Zehntel ihres Durchmessers erreicht. Die Sonne hat rechts oben eine Delle bekommen, die an einen angebissenen Apfel erinnert. Um 12:40 ist bereits der Höhepunkt dieser bescheidenen Finsternis erreicht, um 13:28 endet die Bedeckung schließlich.

Nur mit Hilfsmitteln sichtbar

Direkt in die Sonne zu blicken ist niemals ratsam ; neben der erheblichen Gefahr schwerer Augenschäden verhindert die Blendung auch jegliche Detailwahrnehmung, sodass ohnehin nichts von der Einkerbung zu sehen wäre. Dies gilt um so mehr, weil die Sonne zur Finsternis sowohl tages- als auch jahreszeitlich bedingt nahezu ihren höchstmöglichen Stand erreicht.

Filter oder Projektion

Zur Beobachtung werden einerseits metallbedampfte Folien empfohlen, die in Form sogen. Finsternisbrillen („Sofi-Brillen“) im optischen Fachhandel erhältlich sind. Bequemer ist aber gerade bei dem hohen Sonnenstand eine indirekte Beobachtung mit einem Fernglas oder Spektiv auf eine Projektionsfläche, etwa ein weißes Papierblatt. Hierzu ein paar Tipps:

  • Gewöhnliche Feldstecher und Spektive sind meist gut geeignet, astronomische Fernrohre weniger. Diese können durch Erhitzung des Fernrohrinneren sogar Schaden nehmen.
  • Das Fernglas auf ein Stativ montieren und anhand des Eigenschattens auf die Sonne ausrichten. Bei einem zweiäugigen Feldstecher evtl. eines der Objektive abdecken. Wenn das Sonnenbild auf der Projektionsfläche erscheint, am Okular drehen, bis das Bild möglichst scharf auf dem Papier zu sehen ist. Je nach Fernrohrgröße ist ein Abstand von 20-50 vom Okular zum Papier ideal.
  • Besonders wichtig: Dabei niemals mit den Augen anvisieren! Während schon das direkte Sonnenlicht im Auge nach kurzer Zeit z.T. irreversible Schäden anrichtet, riskiert man durch das im Fernglas gebündelte Licht mit hoher Wahrscheinlichkeit eine Erblindung! Das vom Papier reflektierte Sonnenbild ist dagegen unschädlich, auch wenn es bei zu geringem Abstand zum Fernglas recht grell erscheinen kann. Jedenfalls sollte man den Blick stets in Richtung der Projektionsfläche, also nach unten halten und nicht aufwärts Richtung Sonne!
So eine Brille ist zur Beobachtung geeignet, im Gegensatz zu einer normalen Sonnenbrille@AdobeStock

Das nächste Mal

Die nächste in Österreich sichtbare Sonnenfinsternis findet am Dienstag, den 25. Oktober 2022 ebenfalls um die Mittagszeit statt. Dann wird die Sonne immerhin zu knapp einem Drittel vom Mond bedeckt, präsentiert sich also auch sichelförmig und nicht nur wie „angebissen“.

Bodenhoch vs. Höhentief: Wochenende mit zweigeteiltem Wetter

Eine Kaltfront sorgt vorübergehend für eine Abkühlung.

Der Blick aufs Barometer kann derzeit irreführend sein, so passt der vergleichsweise hohe Luftdruck nicht zum aktuellen Wettergeschehen (wobei allgemein die Luftdruckänderung mit der Zeit viel aussagekräftiger ist). Tatsächlich sieht man auf der heutigen Bodenwetterkarte ein umfangreiches Azorenhoch mit einem Ableger namens WALTRAUD mit Kern über der Nordsee. Der Alpenraum befindet sich an dessen Rande und Wetterfronten sind nur in großer Entfernung über dem Nordatlantik und über der Ukraine zu finden. Das Wetter gestaltet sich allerdings unbeständig, da wir am Rande eines Höhentiefs über Polen liegen, welches auf der Bodenwetterkarte nicht sichtbar ist.

Die Bodenwetterkarte am Samstag zeigt das umfangreiche Hoch WALTRAUD mit Kern über der Nordsee.

Höhentief über Polen

Abseits der Alpen war es am Samstagmorgen noch oft sonnig, seit dem späten Vormittag sind aber vermehrt Quellwolken entstanden. Wie man am Wetterradar verfolgen kann, ziehen derzeit vor allem von Oberösterreich bis ins südliche Wiener Becken sowie im Süden einige Schauer und auch kurze Gewitter durch. Verantwortlich dafür ist ein sogenannter Kaltlufttropfen mit Kern über Polen. Es handelt sich dabei um ein Höhentief in mehreren Kilometern Höhe, welches sich durch niedrige Temperaturen im Vergleich zur Umgebung auszeichnet. Im folgenden Infrarot-Satellitenbild (zeigt die Temperaturen an der Wolkenobergrenze) sieht man die Isohypsen, die in etwa vergleichbar sind zum Bodendruck auf der Bodenwetterkarte, allerdings in einer Höhe von etwa 5500 m.

Höhentief im IR-Satbild mit IFS-Modelldaten und Blitzen am 29.5.21, 14 Uhr MESZ. © EUMETSAT / UBIMET
Enstehende Quellwolken über Graz. © www.foto-webcam.eu

Spezialfall Kaltlufttropfen

Höhentiefs entstehen durch Verwirbelungen des polarumlaufenden Jetstreams, Meteorologen sprechen auch von einem Abschnürungsprozess bzw. „Cut-Off“. Solche Höhentiefs verlagern sich nicht mit der Höhenströmung, sondern werden durch die umgebende Luftdruckverteilung beeinflusst. Oft verharren sie wie ein Kreisel an Ort und Stelle. Ein Spezialfall stellen Kaltlufttropfen dar, bei denen sich das zugehörige Bodentief durch Reibung oder Warmluftzufuhr aufgelöst hat und in der Höhe in einem begrenzten Gebiet von etwa 100 bis 1000 Kilometern kalte Luft zurückbleibt. Da diese kalte Anomalie aber nur in der oberen Hälfte der Troposphäre ausgeprägt ist, scheinen diese Gebiete nicht auf den Bodenwetterkarten auf. Tatsächlich befinden sich Kaltlufttropfen sogar oft im Randbereich eines Bodenhochs, wie aktuell von Hoch WALTRAUD. Kaltlufttropfen werden durch die bodennahe, zumeist schwache Strömung gesteuert.

Westen wetterbegünstigt

Die Höhenkaltluft sorgt im Zusammenspiel mit der Erwärmung der bodennahen Luft durch Sonneneinstrahlung für eine verstärkte vertikale Temperaturabnahme und somit für eine Labilisierung der Atmosphäre. Vor allem im Bereich von bodennahen Windkonvergenzen oder über ausgeaperten Bergen entstehen dann Schauer und Gewitter. Am Samstag muss man vor allem von Oberösterreich bis zum Alpenostrand und im Süden mit gewittrigen Schauern rechnen, während der äußerste Westen dank vergleichsweise milderer Luft in der Höhe wetterbegünstigt ist. Dei Temperaturen erreichen 14 bis 20 Grad mit den höchsten Werten in Vorarlberg.

Am Wochenende werden die höchsten Temperaturen in den großen Tallagen im Westen und Südwesten erreicht.

Zögerliche Wetterbesserung in Sicht

In den kommenden Tagen zieht der Kaltlufttropfen nur langsam südostwärts ab, am Rande des Hochs gelangt aber vergleichsweise trockene Luft ins Land. Am Sonntag scheint somit in weiten Landesteilen zumindest zeitweise die Sonne, im Westen und Süden überwiegt sogar der Sonnenschein. Nur von der Pinzgauer Tauernregion über das Ennstal und Mariazellerland bis nach Niederösterreich breiten sich untertags wieder Quellwolken aus und mitunter gehen einzelne Schauer nieder. Bei mäßigem bis lebhaftem, in manchen Nordföhntälern und am Alpenostrand in Böen auch kräftigem Nordwind erreichen die Temperaturen 12 bis 22 Grad mit den höchsten Werten im Drau- und Gailtal. Zu Beginn der kommenden Woche lässt die Schauerneigung weiter nach und die Temperaturen steigen langsam, aber sicher an. Ab etwa Mitte der Woche sind dann auch frühsommerliche Temperaturen in Sicht!

Ensemble-Prognose von Temperatur in der freien Atmosphäre und Niederschlag. Kommende Woche wird es wärmer! © ECMWF

 

Was ist ein Höhentief?

Höhentiefs liegen in mehren Kilometern Höhe und zeichnen sich durch niedrige Temperaturen im Vergleich zur Umgebung aus. Deren Entstehung wird oft durch Verwirbelungen des polarumlaufenden Jetstreams begünstigt, Meteorologen sprechen auch von einem Abschnürungsprozess bzw. einem „Cut-Off“. Solche Höhentiefs verlagern sich nicht mit der Höhenströmung, sondern werden durch die umgebende Luftdruckverteilung beeinflusst. Oft verharren sie wie ein Kreisel an Ort und Stelle.

Kaltlufttropfen

Ehemalige Tiefdruckgebiete bzw. Höhentiefs können sich zu sog. Kaltlufttropfen umwandeln, wenn das Bodentief durch Reibung oder Warmluftzufuhr aufgelöst wird und das Höhentief stattdessen erhalten bleibt. Tatsächlich befinden sich Kaltlufttropfen sogar oft im Randbereich eines Bodenhochs. In einem begrenzten Gebiet von etwa 100 bis 1000 Kilometern befindet sich dabei deutlich kältere Luft als in der Umgebung. Da diese kalte Anomalie aber nur in der oberen Hälfte der Troposphäre ausgeprägt ist, scheinen diese Gebiete nicht auf den Bodenwetterkarten auf. Kaltlufttropfen werden durch die bodennahe Strömung „gesteuert“, d.h. sie verlagern sich immer mit dieser zumeist relativ schwachen Strömung.

Höhentief im IR-Satbild mit IFS-Modelldaten und Blitzen am 29.5.21, 13 Uhr MESZ. © EUMETSAT / UBIMET

Labile Schichtung der Luft

Ein Höhentief wirkt sich merklich auf das tägliche Wettergeschehen aus, denn Höhenkaltluft sorgt für eine verstärkte vertikale Temperaturabnahme und somit für eine Destabilisierung der Atmosphäre. Besonders im Frühjahr und Sommer entstehen unter dem Einfluss der Höhenkaltluft Quellwolken, welche im Tagesverlauf zu Schauern und Gewittern heranwachsen. Die Lebensdauer von Kaltlufttropfen ist allerdings meist auf ein paar Tage bis etwa eine Woche begrenzt, da sich die Temperaturunterschiede in der Höhe allmählich ausgleichen.

Vorhersagegenauigkeit

Wenn Höhenkaltluft im Spiel ist, nimmt die Vorhersagbarkeit des Wetters etwas ab: Einerseits werden Kaltlufttropfen durch die bodennahe Strömung gesteuert, was sich negativ auf die Qualität von Modellprognosen auswirkt, andererseits sorgt die konvektive Wetterlage für große Unterschiede auf engem Raum. Vor allem räumlich detaillierte Prognosen, wie etwa jene von Wetter-Apps, sind bei solchen Wetterlagen also mit Vorsicht zu genießen.

Pollenausblick

Das derzeit unbeständige Wetter dämpft den Pollenflug. Einerseits setzen die Pflanzen mangels Sonnenschein sowie aufgrund der tiefen Temperaturen weniger Pollen frei. Andererseits wird die Luft durch die Regenschauer wieder von den Pollen rein gewaschen.

Beginn der Gräserblüte

Auch wenn es derzeit noch nicht in Sicht ist, beständigeres Wetter führt unweigerlich aber auch wieder zu einem Anstieg der Pollenbelastung. Während die Blüte der Esche und Birke weitgehend vorbei ist, stehen wir derzeit am Beginn der Gräserblüte. Ruch- und Fuchsschwanzgräser sowie auch Rispen- und Knäuelgräser erreichen nun bundesweit die Blühbereitschaft.

Vor allem zu Beginn der Gräserblüte kann das Immunsystem, die auf Gräserpollen immunisiert sind, besonders empfindlich reagieren. Selbst den derzeitigen Wetterbedingungen kann es zu ungewöhnlich starken Reaktionen kommen.

Weitere Blühzeiten

Zwar ist die Hauptsaison der Pollen natürlich der Frühling, doch auch im Sommer kommt es aufgrund von Roggen, Beifuß, Nessel- und Glaskraut sowie auch Pilzsporen zu Belastungen.

Pollenart Blühzeiten
Gräser Mitte April bis Mitte September
Roggen Mitte Mai bis Mitte Juni
Nessel- und Glaskraut Anfang Mai bis Mitte September
Ragweed August bis Anfang Oktober
Pilzsporen Juni bis Ende Oktober

Tipps bei Pollenallergie

Ganz vermieden werden können die Pollen natürlich nicht, es gibt jedoch ein paar Möglichkeiten die Belastungen für Allergiker zu senken. Eine Möglichkeit stellt die Filterung der Luft dar. Pollenschutzgitter oder Pollenfiltermasken helfen dabei, die Konzentration der Pollen gering zu halten. Selbst ein Aufenthalt in geschlossenen Räumen hat gezeigt, dass bereits nach 10 Minuten die Belastung aufgrund der Setzung der Pollen zurückgeht. Da die Pollenkonzentration in den Berge im Allgemeinen geringer ist, lohnt sich auch mal ein Ausflug in die Alpen. Auch an den Küsten ist die Belastung meistens deutlich geringer.

Die Eisheiligen stehen bevor

Nahaufnahme von Frost auch einem Gänseblümchen ©pixabay/Myriamy_Fotos

Den Ursprung der Eisheiligen nimmt man im Mittelalter an, als die gläubige, vorwiegend bäuerliche Bevölkerung von spätem Frost und den dadurch entstandenen Ernteeinbußen betroffen war. Die Ehrfurcht vor diesem Witterungsphänomen hat die Menschen dazu veranlasst, die Gedenktage Heiligen und Märtyrern zuzuordnen. Je nach Region sind das drei bis fünf Eisheilige:

  1. Mamertus, Bischof von Vienne – 11. Mai (nur Norddeutschland)
  2. Pankratius, frühchristlicher Märtyrer – 12. Mai
  3. Servatius, Bischof von Tongeren – 13. Mai
  4. Bonifatius, frühchristlicher Märtyrer – 14. Mai
  5. Sophia „Kalte Sophie“, frühchristliche Märtyrerin – 15. Mai (Süddeutschland und Österreich)

Frost im Mai

Die Temperaturen auf dem europäischen Festland steigen im Mai im Durchschnitt sehr schnell an, so erhöht sich die durchschnittliche Tagesmitteltemperatur beispielsweise in Wien im Laufe des Monats von 13 auf 17 Grad. Frost im Mai und somit auch zu den Eisheiligen ist in den tiefen Lagen also generell recht selten. In Wien, Zürich und Berlin muss man höchstens alle 10 Jahre, in Innsbruck und München zumindest in jedem zweiten Jahr damit rechnen. Deutlich häufiger sind späte Fröste allerdings in höher gelegenen Alpentälern. In diesen Regionen ist sogar Anfang Juni noch leichter Morgenfrost möglich.

Eismänner

Die Ehrfurcht vor dem Frost während der Blütezeit wichtiger Pflanzen hat die Menschen dazu veranlasst, die Gedenktage vom 12. bis zum 15. Mai zuzuordnen. Aufgrund der gregorianischen Kalenderreform finden die Eisheiligen genau genommen aber knapp 10 Tage später statt, weil diese Bauernregel noch aus der Zeit des julianischen Kalenders stammt.

Singularität

Die Eisheiligen sind aus meteorologischer Sicht eine sogenannte Singularität, also eine spezielle Wetterlage, die zu einem bestimmten Zeitabschnitt im Jahr mit erhöhter Wahrscheinlichkeit auftritt. Tatsächlich weist die durchschnittliche Tagesmitteltemperatur in Österreich in den vergangenen 50 Jahren zwischen dem 19. und dem 24. Mai einen vorübergehenden Rückgang auf, also gibt es zu dieser Jahreszeit eine Häufung an Kaltlufteinbrüchen. Streng genommen finden die Eisheiligen also heuer zu früh statt, so zeichnet sich mit einer Kaltfront in der Nacht auf Mittwoch ein Temperaturrückgang von 10 bis 15 Grad ab.

Klimawandel

Das Wetter und damit die Blühtermine unterliegen früher wie heute großen Schwankungen von Jahr zu Jahr. Mittlerweile sorgen die milden Winter und die rasch steigenden Temperaturen im März und April jedoch regelmäßig für einen früheren Start der Vegetationsperiode. Wenn diese frühere Ausnahme immer häufiger vorkommt und dadurch zum Normalfall wird, kommt es zu einer Verschiebung der Durchschnittswerte, und das ist eben genau das, was der Klimawandel macht. Auf diese Art kommt die paradox anmutende Situation zustande, dass bei wärmerem Klima die Frostgefährdung in Mitteleuropa sogar zunimmt. Früher waren die Eisheiligen besonders gefürchtet, da die Pflanzen erst zu dieser Zeit soweit entwickelt waren, um frostgefährdet zu sein. Heutzutage haben Landwirte dagegen bereits im April mit der Frostgefahr zu kämpfen.

Was Hurrikans, Zyklone und Taifune unterscheidet

Als Hurrikan wird ein tropischer Wirbelsturm bezeichnet, der im einminütigen Mittel eine Windgeschwindigkeit von mindestens 118 km/h aufweist und im Bereich des Atlantiks und des Nordostpazifiks auftritt. Der Begriff Hurrikan leitet sich von Huracán ab, dem Maya-Gott des Windes, des Sturmes und des Feuers. In anderen Regionen der Erde ist der Hurrikan hingegen unter anderen Namen bekannt: So heißt das gleiche Phänomen in Ostasien und im Westpazifik Taifun, im Indischen und im Südpazifik Zyklon und in Australien und Indonesien Willy-Willy (inoffizielle Bezeichnung).

Entstehung und Auftreten

Tropische Wirbelstürme entstehen für gewöhnlich in der Passatwindzone über den Weltmeeren. Eine Grundvoraussetzung für deren Bildung sind hohe Wassertemperaturen  (besonders effektiv ab etwa 26 Grad), da dann große Wassermengen verdunsten, die dem thermodynamischen System bei seiner Entwicklung enorme Energiemengen bereitstellen. Entsprechend treten die meisten tropischen Wirbelstürme in den Sommer- und Herbstmonaten der jeweiligen Regionen auf.

Struktur und Auswirkungen

Mit einem Durchmesser von einigen hundert Kilometern und einer Lebensdauer von mehreren Tagen gehören tropische Wirbelstürme zu den größten und langlebigsten meteorologischen Erscheinungen. Sie sind gekennzeichnet durch großflächige organisierte Konvektion und weisen eine geschlossene zyklonale Bodenwindzirkulation auf. Darüber hinaus kommt es bei entsprechender Intensität zur Ausbildung eines wolkenarmen Auges im Zentrum des Sturms, wo der Luftdruck im Extremfall unter 900 hPa sinkt. Am Rande des Auges treten die höchsten Windgeschwindigkeiten von teils mehr als 300 km/h auf. Neben dem starken Wind sind vor allem sintflutartige Regenfälle sowie Sturmfluten die größte Gefahr.

Saffir-Simpson-Skala

Es gibt unterschiedliche Skalen für die Klassifizierung der  Windstärken von tropischen Wirbelstürmen. Im Atlantik erfolgt dies mittels der sogenannten Saffir-Simpson-Skala, die in fünf Kategorien unterteilt ist. Nicht verwechseln darf man allerdings einen Hurrikan bzw. Taifun mit einem Tornado! Dieser entsteht auf völlig unterschiedliche Art und Weise im Bereich von Superzellengewittern und weist somit entsprechend andere Eigenschaften auf. Allein seine horizontale Ausdehnung ist um etwa das Tausendfache geringer.

Italientiefs: Regen und Schnee in Österreich

Regen

Wenn kalte Luftmassen westlich der Alpen in den Mittelmeerraum vordringen, sind die Bedingungen für die Entstehung von Tiefdruckgebieten rund um dem Golf von Genua aufgrund der Position und Ausrichtung der Alpen besonders günstig. In Österreich kommt dabei meist eine südliche Höhenströmung auf, welche feuchte Mittelmeerluft zu den Alpen führt. Italientief ist aber nicht gleich Italientief, so können die Auswirkungen auf unser Wetter sehr unterschiedlich ausfallen.

Besondere Wetterlagen

Die meisten Italientiefs ziehen vergleichsweise schnell nach Osten oder Südosten ab und sorgen nur vorübergehend für kräftige Niederschläge im Süden Österreichs. Italientiefs stehen allerdings auch im Zusammenhang mit markanten Wetterlagen, welche gebietsweise mit großen Niederschlagsmengen verbunden sind:

  • Ergiebiger Südstau (v.a. Osttirol und Oberkärnten)
  • Gegenstromlage (generell die Alpen)
  • Vb-Tief bzw. „Fünf-b-Tief“ (v.a. Osten und Südosten)

Südstau

Nahezu ortsfeste Tiefdruckgebiete über dem westlichen Mittelmeerraum sorgen in Österreich für eine anhaltende Südströmung. Bevor die Luft auf die Alpen prallt, nimmt sie über dem Mittelmeer viel Feuchtigkeit auf und wird in weiterer Folge in den Südalpen wie ein Schwamm ausgepresst. In Österreich sind davon Osttirol und Oberkärnten besonders stark betroffen.  Je nach Ausrichtung und Stärke der Höhenströmung gibt es dabei die größten Niederschlagsmengen in der Regel im Gail- und Lesachtal oder am Loibl in den Karawanken. Erst Ende August gab es etwa am Nassfeld in Kärnten rund 300 mm Regen in nur zwei Tagen.

Solange keine kühle Luft aus NW eintrifft, weht in den Nordalpen Föhn.

Im Winterhalbjahr kann die Schneefallgrenze bei solchen Lagen selbst bei einer relativ hohen Nullgradgrenze um 2000 m Höhe bis in manche Tallagen absinken: Die Schmelzwärme des Schnees, die der Umgebung entzogen wird, sorgt nämlich in engen Tälern für eine Abkühlung der Luft bis auf 0 Grad. Weitere Hintergründe zum Thema Niederschlagskühlung haben wir kürzlich hier zusammengefasst.

Gegenstromlage

Bei vielen Südstaulagen weht in den Nordalpen gleichzeitig Föhn. Wenn das dazugehörige Höhentief allerdings nahezu ortsfest knapp westlich von Österreich zu liegen kommt, sickert an der Alpennordseite aus Nordwesten kühle Luft ein, die den Föhn abheben lässt. Die südliche Strömung im Kammniveau sinkt dann an der Alpennordseite nicht mehr ab, sondern gleitet über die kühle Luft in tiefen Schichten auf. Der Niederschlag kann aus Süden also auch auf die Alpennordseite übergreifen. Meteorologen sprechen dann von einer Gegenstromlage, da in den Tälern der Nordalpen eine schwache nördliche Strömung aufkommt, während in der Höhe starker Südwind weht. Bei diesen Wetterlagen kann die Schneefallgrenze je nach Niederschlagsintensität dank der Niederschlagsabkühlung bis in manche Täler der Nordalpen absinken, so ist diese Wetterlage meist auch für den ersten Schnee der Saison etwa am Brenner oder im Pinz- und Pongau verantwortlich.

Eine Gegenstromlage sorgt auch in den Nordalpen für Regen bzw. Schneefall.

Vb-Tief

Wenn Italientiefs sich ost- bis nordostwärts über die Adria in Richtung Ungarn und schließlich Polen verlagern, bestehen auch im Osten Österreichs die größten Chancen auf kräftigen Regen bzw. Schneefall. Bei solch einer Zugbahn des Tiefkerns sprechen Meteorologen auch von einem Vb-Tief („Fünf-b-Tief“).

Vb-Tief
Bereits vor über 100 Jahren hat Van Bebber die häufigsten Tief-Zugbahnen analysiert.

Auch bei dieser Wetterlage gleiten feuchte Luftmassen auf der kühlen Luft in tiefen Schichten auf, aufgrund der Zugbahn des Tiefs sind die größten Niederschlagsmengen aber im Osten und Südosten Österreichs zu erwarten. Diese Wetterlage ist relativ selten, im Winter kann sie aber zu markanten Wintereinbrüchen führen.

Titelbild © AdobeStock

Höhenkaltluft sorgt für typisches Aprilwetter

Wien

Launischer Monat

Im April kommt es immer wieder zu großen Gegensätzen beim Wetter: Während es manchmal bei strahlendem Sonnenschein schon frühsommerlich warm wird, fällt an anderen Tagen bis in tiefen Lagen noch Schnee. Hauptursache dafür sind der Sonnenstand sowie die Verteilung der Landmassen: Die Luft erwärmt sich nämlich im Frühjahr über Südeuropa bzw. Nordafrika schneller als über Nordeuropa und dem Nordmeer, zumal im Norden Skandinaviens in dieser Jahreszeit meist noch Schnee liegt. Dadurch entsteht ein großes Temperaturgefälle zwischen Nord und Süd. Je nach Wetterlage können also bereits sehr warme sowie auch noch kalte Luftmassen in unsere Breiten gelangen.

Ein typisches Satellitenbild mit Höhenkaltluft (6.4.21, 15:15 Uhr). © EUMETSAT

Höhenkaltluft

Als typisches Aprilwetter wird umgangssprachlich launisches, wechselhaftes Wetter mit einer raschen Abfolge von Sonnenschein, Wolken und Regen bzw. Schnee in nur wenigen Stunden bezeichnet. Dazu kommt es meist im Zuge von Kaltlufteinbrüchen, wenn sich in der Höhe sehr kalte Luftmassen befinden und die Sonne gleichzeitig die bodennahe Luft bereits erwärmt. Höhenkaltluft wirkt sich merklich auf das tägliche Wettergeschehen aus, denn sie sorgt für eine verstärkte vertikale Temperaturabnahme und somit für eine Destabilisierung der Atmosphäre. Damit entstehen vermehrt Quellwolken, welche im Tagesverlauf rasch zu Schauern und Gewittern heranwachsen.

Der Höhentrog mit Temperaturen um -38 Grad in 500 hPa (etwa 5300 m). © ECMWF

Noch mehr Schnee in Sicht

Während abseits der Alpen zahlreiche Schauer durchziehen, stauen sich entlang der Nordalpen teils auch anhaltend feuchte Luftmassen: In der Nacht auf Mittwoch fällt von Vorarlberg bis ins Salzkammergut wieder häufig Schnee, besonders in den typischen Staulagen kommen nochmals 5 bis 15, im Hinteren Bregenzerwald lokal auch 20 cm Neuschnee dazu.

Neuschneeprognose für die Nacht auf Mittwoch. © UBIMET

Am Mittwochvormittag lassen die Schneeschauer in den Nordalpen vorübergehend nach, im Tagesverlauf ziehen aber auch im Donauraum und im Osten noch einzelne Schnee- und Graupelschauer durch. Dazwischen scheint die Sonne, ehe am Nachmittag und Abend der Schneefall an der Alpennordseite mit Ankunft eines Randtiefs von Westen her wieder häufiger wird. Am späten Abend bzw. in der Nacht auf Donnerstag schneit es dann vor allem von den Kitzbüheler Alpen bis in die Obersteiermark, besonders zwischen Hochkönig und Hochschwab kommen 15 bis 25 cm Neuschnee zusammen. Auch im Norden und Nordosten kann es aber neuerlich anzuckern.

Neuschneeprognose für die Nacht auf Donnerstag. © UBIMET

Vorhersagegenauigkeit

Wenn Höhenkaltluft im Spiel ist, nimmt die Vorhersagbarkeit des Wetters etwas ab: Zwar kann man sehr gut den großräumigen Wettercharakter beschreiben, allerdings kommt es lokal zu großen räumlichen und zeitlichen Unterschieden. Vor allem räumlich detaillierte Prognosen, wie etwa jene von Wetter-Apps, sind bei solchen Wetterlagen also mit Vorsicht zu genießen.

Schnee, Hagel und Graupel

Graupelkörner auf dem Boden©Jne Valokuvaus

Ein umfangreicher Höhentrog sorgt in diesen Tagen für kühles Aprilwetter mit Schneeschauern und lokalen Graupelgewittern. Letzterer wird sehr häufig mit Hagel verwechselt.

Ist Graupel kleiner Hagel?

Fälschlicherweise wird Graupel oftmals als kleiner Hagel abgetan, eigentlich ist Graupel aber noch eine Schneeart. Durch anfrieren unterkühlter Wassertröpfchen werden Schneekristalle zu kleinen bis 5 mm großen Kügelchen verklumpt. Dazu ist die Dichte von Graupel geringer als von Hagel und die Oberfläche eher rau. Dadurch fallen sie langsamer und können keinen direkten Schaden anrichten, sie können allerdings in kürzester Zeit für rutschige Fahrbahnen sorgen.

Höhenkaltluft

Graupelschauer entstehen vor allem dann, wenn die Luft in einigen Kilometern Höhe sehr kalt ist. Im Winterhalbjahr sind Temperaturen von unter -30 Grad in rund 5 Kilometern Höhe keine Seltenheit. Wenn es dann am Boden gleichzeitig leichte Plusgrade gibt, dann ist der Temperaturunterschied von etwa 35 oder 40 Grad groß genug, dass sich kräftige Schauer oder Gewitter bilden können. In diesen Schauerwolken vermischen kräftige Auf- und Abwinde Schneeflocken mit unterkühlten Wassertröpfchen, die beim Zusammenwachsen schließlich zu Graupel werden und Richtung Erdoberfläche fallen.

Glätte und Böen

Da der Wechsel von Sonne hin zu kräftigen Schauern und umgekehrt oftmals sehr rasch vonstatten geht und daher für viele überraschend erfolgt, sind besonders Autofahrer nicht zu unterschätzenden Gefahren ausgesetzt. Innerhalb nur weniger Augenblicke können die Straßen nämlich von Schnee oder Graupel bedeckt sein und entsprechend für eine erhöhte Glättegefahr sorgen. Weiters kommt es meist auch zu einer Einschränkung der Sichtweite und zu teils stürmischen Böen.

Osterwetter-Extreme in Österreich: Von Schneefall bis Sommerwetter

Hase im Schnee

Das Osterfest findet jährlich zwischen dem 22. März und dem 25. April statt. Genauso variabel wie das Datum gestaltet sich auch das Wetter, wobei das Datum nicht der einzige Grund dafür ist: Einerseits befinden sich zu dieser Jahreszeit im hohen Norden nämlich noch sehr kalte Luftmassen (die arktische Meereisfläche erreicht im März ihre maximale Ausdehnung), welche bei passender Großwetterlage bis nach Österreich gelangen. Andererseits können bei einer südwestlichen Strömung bereits sehr milde Luftmassen aus Nordafrika zu uns gelangen, welche bei dem bereits hohen Sonnenstand vor Ort nochmals erwärmt werden.

Schnee im 2013

Schaut man sich die Osterfeste der letzten 30 Jahre an, so sticht einem sofort 2013 ins Auge. Ein massiver Kaltlufteinbruch hat damals am 31. März für winterliche Verhältnisse mit Schneefall bis in tiefe Lagen gesorgt. In den östlichen Nordalpen gab es 20 bis 30 cm Schnee, aber selbst im Flachland fiel im Norden und Osten etwas Nassschnee. Die Höchstwerte am Ostersonntag lagen zwischen -1 Grad im östlichen Berg- und Hügelland und +7 Grad in Lienz. In Wien kam die Temperatur bei zeitweiligem Schneefall und lebhaftem Nordwestwind nicht über 2 Grad hinaus und in der folgenden Nacht gab es verbreitet Frost.

Schnee am Erlaufsee
Schnee am Erlaufsee im 2013. © Fred Lindmoser; www.mariazellerland-blog.at
Höchstwerte zu Ostern im Jahr 2013.

Sommer im 2000

Dass Ostern wettertechnisch auch ganz anders ausfallen kann, zeigt ein Blick auf das Jahr 2000: Bei Temperaturen bis zu 29 Grad in Salzburg gab es teils sogar hochsommerliches Wetter im April. Auch in den Jahren 2009, 2011, 2019 ud 2020 konnte man Mitte bzw. Ende April bei Temperaturen über 20 Grad die Osterneste getrost im T-Shirt suchen.

Höchstwerte zu Ostern im Jahr 2000.

Anbei die Höchstwerte am Ostersonntag seit 1999:

Höchstwert  Wien Innsbruck Kranebitten
4.4.1999 21 13
23.4.2000 27 26
15.4.2001 8 4
31.3.2002 19 16
20.4.2003 19 18
11.4.2004 11 11
27.3.2005 14 20
16.4.2006 19 17
8.4.2007 18 17
23.3.2008 6 3
12.4.2009 23 23
4.4.2010 18 14
24.4.2011 22 21
8.4.2012 5 4
31.3.2013 2 5
20.4.2014 18 18
5.4.2015 8 6
27.3.2016 15 18
16.4.2017 14 10
1.4.2018 13 12
21.4.2019 22 24
12.4.2020 23 24
4.4.2021 10* 13*

* Prognose für 2021 (Stand: 1.4.21)

Seit dem Jahr 1999 wurden am Ostersonntag in Wien 13 mal Temperaturen über 15 Grad und 6 mal oberhalb der 20-Grad-Marke verzeichnet. In Innsbruck wurden im selben Zeitraum an fünf Ostersonntagen Temperaturen über 20 Grad gemessen (im 2005 waren es 19,9 Grad). Heuer bleibt es deutlich kühler, so kommen die Temperaturen nur in Innsbruck über die 10-Grad-Marke hinaus.

Sonniges und mildes Wetter zu Ostern vor einem Jahr. © www.foto-webcam.eu

Und 2021?

Nach einem sehr windigen und speziell im Nordosten auch unbeständigem Samstag hat der Ostersonntag heuer vor allem im Süden und Westen viel Sonnenschein zu bieten, aber auch im Donauraum und im östlichen Flachland kommt im Tagesverlauf zumindest zeitweise die Sonne zum Vorschein. Vom Salzkammergut bis zum Alpenostrand halten sich einige Wolken, bis auf einzelne Schauer im östlichen Bergland bleibt es aber auch hier meist trocken. Die Schneefallgrenze steigt von den Tallagen tagsüber gegen 700 m an. Bei mäßigem Nord- bis Nordostwind liegen die Höchstwerte zwischen 3 Grad im Mariazellerland und 14 Grad im Oberinntal. In der Nacht zum Ostermontag klart es auf und verbreitet muss man mit leichtem bzw. im östlichen Bergland auch mäßigem Frost rechnen. Eine kräftige Kaltfront mit Schnee teils bis in die Täler kündigt sich allerdings nach dem verlängerten Wochenende an… mehr Infos dazu folgen hier in den kommenden Tagen.

Titelbild © Adobe Stock

Mildes Wetter: Die Marillenblüte beginnt

Marillenblüte im Frühling. © Nikolas Zimmermann

Aus phänologischer Sicht befinden wir uns seit Beginn der Forsythienblüte im Erstfrühlings, also der mittleren Phase des phänologischen Frühlings. Die Forsythienblüte kündigt den Pollenallergikern meist die unmittelbar bevorstehende Birkenblüte an. Kurz vor den Birken beginnen aber meist die Marillen zu blühen, die als die am frühesten blühende Obstsorte am stärksten frostgefährdet sind. In der Wachau beginnt die Blüte in diesen Tagen. Mit Beginn der Apfelblüte folgt dann im April bald auch schon der Vollfrühling, also das letzte Drittel des phänologischen Frühlings.

Die aktuelle phänologische Uhr in Deutschland. © DWD

Die Dauer der Marillenblüte ist vom Wetter abhängig, Bei sehr warmen Temperaturen beträgt die Blühdauer etwa 1 Woche, bei kühleren Temperaturen auch entsprechend länger bis zu ca 2 Wochen.

Die Marillenblüte beginnt. © www.wachauermarille.at/

Kühles Osterfest

Die Spätfrostgefahr ist heuer noch nicht gebannt: Wie man in den vergangenen Jahren mehrmals gesehen hat, sind auch im April noch markante Kaltlufteinbrüche möglich. Selbst nach den Eisheiligen, am 18. Mai, kam es im Jahre 2012 nach einer warmen Vorgeschichte im Weinviertel noch verbreitet zu Frost. Paradoxerweise hat sich die Gefahr von Frostschäden aufgrund der steigenden Temperaturen vergrößert, mehr dazu hier: Frühe Vegetationsentwicklung und Spätfrostgefahr. Heuer erfassen zu Ostern zumindest vorübergehend wieder kühle Luftmassen aus Nordeuropa das Land, somit ist kurzzeitig eine Verzögerung der Blüte in Sicht. Besonders am Ostersonntag ist in den frühen Morgenstunden auch leichter Frost möglich.

Prognose der Tiefstwerte zu Ostern (Stand: 30.3.2021). © UBIMET

Große Schäden im 2020

Im vergangenen Jahr standen die Marillenbäume in der Wachau und im östlichen Flachland nach einem sehr milden Winter bereits Mitte März in Vollblüte. Durch einen starken Kälteeinbruch um die Monatswende von März zu April – teils gab es sogar Rekorde – wurden die Fruchtansätze allerdings zum Großteil zerstört, die Marillenbauern in der Wachau meldeten teils 90 Prozent Einbußen bei der Ernte.

Frostschutzberegnung im Steinfeld im März 2020. Bild: R. Reiter

Früher Start immer häufiger

Im Vergleich mit dem Mittel etwa der letzten 100 Jahren war die Vegetationsentwicklung in den letzten Jahren um mehrere Wochen früher dran, mit der Ausnahme von 2018: Da legten die Pflanzen nach einem anfänglichen Rückstand erst im April einen Schnelldurchlauf ein, der nach Ausbleiben von Spätfrösten schließlich in einer Rekordernte bei fast allen Obstsorten gipfelte. Insgesamt hat sich der phänologische Frühling seit etwa 1988 gegenüber den Jahrzehnten zuvor um ein bis zwei Wochen verfrüht. In Japan wurde in Kyoto übrigens heuer die früheste Vollblüte der japanischen Zierkirsche seit mehr als 1000 Jahren beobachtet, mehr dazu hier: Hanami.


Titelbild © N. Zimmermann

Hanami – Das japanische Kirschblütenfest

Kirschblüte

Mit Beginn der Kirschblüte („Sakura“) wird in Japan alljährlich der Frühling begrüßt. Je nach Region und Witterung ist dies dort zwischen Mitte März und Anfang Mai der Fall. Während dieser Zeit treffen sich Einheimische wie auch Touristen unter den weiß und rosa blühenden Bäumen, um gemeinsam das Kirschblütenfest zu feiern. Genau genommen wird dabei Hanami betrieben: Es handelt sich um die über 1000 Jahre alte Tradition, bei einem Picknick die Blüten anzuschauen und deren Schönheit zu bewundern. Heuer hat das Fest früh begonnen, mittlerweile gibt es aufgrund des Coronavirus aber auch in Japan immer mehr Einschränkungen, so wurden etwa erste Parkanlagen geschlossen.

Kirschblüte in Tokio

Der zeitliche und regionale Verlauf der im Schnitt etwa zehn Tage andauernden Kirschblüte lässt sich dabei nicht nur vor Ort, sondern auch im japanischen Fernsehen verfolgen. Heuer hat die Kirschblüte in Tokio bereits am 14. März begonnen, die Vollblüte wurde am 22. März verzeichnet – etwa zwei Wochen früher als im langjährigen Mittel bzw. die zweitfrüheste seit Beobachtungsbeginn ex aequo mit 2020.

Klimawandel

In Kyoto gab es heuer sogar die früheste Kirschblüte seit Beobachtungsbeginn, und die Messreihe ist hier mehr als tausend Jahre lang! In den vergangenen Jahrzehnten fand die Vollblüte im Mittel immer früher statt. Dies war zwar manchmal auch schon in der Vergangenheit der Fall, allerdings gibt es mittlerweile nahezu keine Ausreißer mehr nach Mitte April. Das hat einerseits mit der zunehmenden Wärmeinsel der Stadt zu tun, andererseits allerdings vor allem mit dem Klimawandel, so fand im Jahre 1850 die durchschnittliche Vollblüte etwa am 17. April statt.

Wortursprung und Symbolik

Der in Japan allgegenwärtige Begriff „Hanami“ bedeutet in erster Linie ,,Blumen bzw. Blüten betrachten“, bezieht sich dabei aber immer auf die Blüten der japanischen Zierkirsche. Da diese nur sehr kurz blüht und die Blütenreste bald zu Boden rieseln, sind sie ein passendes Symbol für die japanische Ästhetik und für die Vergänglichkeit des Schönen.

Hanami in Mitteleuropa

Auch bei uns wird in vielen Gemeinden und Städten die Blüte der japanischen Zierkirsche und mit ihr der Frühlingsanfang gefeiert. Eines der ältesten und größten europäischen Hanami-Feste findet seit 1968 meist im Mai in Hamburg statt. Krönender Abschluss ist hierbei ein prachtvolles Feuerwerk, das von mehreren zehntausend Menschen an den Außenufern der Alster bestaunt wird. Ob es heuer aufgrund der Coronakrise aber stattfinden kann, ist noch fraglich.


Titelbild: Adobe Stock

Die Sommerzeit beginnt!

Mit der Umstellung von Winter- auf Sommerzeit fühlen sich viele Menschen um eine Stunde Schlaf beraubt und so beklagt sich zu Beginn der neuen Arbeitswoche dann auch manch einer über Müdigkeit. Doch schon mit dem nächsten sonnigen Frühlingstagen kommen die Vorteile der Zeitumstellung ans Tageslicht, denn gegen die eine oder andere Sonnenstunde nach der Arbeit oder dem Home-Office haben nur wenige etwas einzuwenden. Aber was ist denn eigentlich der Grund für die alljährlichen Zeitumstellungen?

Kürzere Nacht

Seit dem 6. April 1980 wird zwischen 2:00 Uhr und 3:00 Uhr morgens an Europas Uhren gedreht. Die Ursache für den frühen Zeitpunkt ist, dass dann der geringste Verkehr und die geringste wirtschaftliche Aktivität herrschen. Als Stichtage wurden vorerst die letzten Sonntage im März und September gewählt, im Jahr 1996 hat man dann jedoch den Beginn der Winterzeit auf das letzte Oktoberwochenende verschoben.

Energiesparmaßnahmen als Grund

Der Auslöser für die Einführung der Sommerzeit waren Energiesparmaßnahmen nach der Ölkrise im Jahr 1973. Mit dieser Maßnahme sollte das lange Tageslicht in den wärmeren Monaten des Jahres besser genutzt und somit Strom für Beleuchtung gespart werden. Doch da im volkswirtschaftlichen Maßstab nur ein geringer Teil des Stroms für die abendliche und nächtliche Beleuchtung verwendet wird, ging dieses Konzept nicht wirklich auf.

60 Länder drehen an der Uhr

In insgesamt 60 Ländern wird nach wie vor an der Zeitumstellung festgehalten. Auf diese Weise lassen sich in den Sommermonaten die langen und warmen Tage bis in den späten Abend hinein genießen. Im Gegenzug kommt mit der Umstellung auf die Winterzeit, die im übrigen die tatsächliche Tageszeit darstellt, wieder langsam die Vorfreude auf die anstehende Weihnachtszeit auf.

 

Titelbild: annca auf Pixabay

Astronomischer Frühlingsbeginn

Rose im Schnee. @shutterstock

Der astronomische Frühling beginnt am Samstag, dem 20. März, um exakt 10:37 Uhr MEZ. An diesem Tag wird das sogenannte Äquinoktium, die Tag-und-Nacht-Gleiche, erreicht. Auf der gesamten Erde dauern Tag und Nacht dann genau 12 Stunden. Das Datum sowie die exakte Uhrzeit des Frühlingsbeginns richten sich nach dem Sonnenstand: Die Sonne steht zu dieser Zeit am Äquator im Zenit, also senkrecht über dem Beobachter. Das heißt die Sonnenstrahlen treffen im 90-Grad-Winkel auf die Erdoberfläche. Das ist jedes Jahr zwischen dem 19. und 21. März der Fall.

Spätwinter statt Frühling

Bereits in gesamte Woche hat uns der Winter fest im Griff und sorgte vor allem in den Nordalpen nochmals für reichlich Schnee.

Nun zum Frühlingsbeginn hat sich verbreitet eine Schneedecke ausgebildet, selbst im Flachland ist es verbreitet angezuckert. So ist es auch wenig verwunderlich, dass es in 6 von 9 Landeshauptstädten eine Schneedecke gibt:

  • Salzburg (Flughafen) 12 cm
  • Innsbruck (Flughafen) 6 cm
  • St. Pölten 3 cm
  • Wien, Eisenstadt und Graz rund 1 cm

Das winterliche Wetter setzt sich noch bis zum Wochenbeginn fort, vor allem in der Nacht von Sonntag auf Montag gibt es in den Nordalpen nochmals Neuschnee.

Im Laufe der Woche kommt der Frühling in die Gänge

Ab Dienstag setzt sich ein Hoch und allmählich mildere Luft durch. Somit scheint ab der Wochenmitte öfter die Sonne und es wird von Tag zu Tag milder. Am letzten Märzwochenende sind dann schon verbreitet frühlingshafte Höchstwerte um die 20 Grad zu erwarten.

Blütezeit: Das mittlere Frühlingsdrittel steht in den Startlöchern

Forsythien im Schnee. @shutterstock

Die beginnende Forsythienblüte markiert typischerweise den Beginn des Erstfrühlings, der nicht mit dem nun zu Ende gehenden Vorfrühling verwechselt werden sollte. Es handelt sich bereits um die zweite, mittlere Phase des phänologischen Frühlings. Die Forsythienblüte kündigt den Pollenallergikern meist die unmittelbar bevorstehende Birkenblüte an. Noch kurz davor beginnen meist die Marillen zu blühen, die als die am frühesten blühende Obstsorte am stärksten frostgefährdet sind.

Frostschutzberegnung im Steinfeld im 2020. Bild: R. Reiter

Blüte gerade noch verhindert

Im vergangenen Jahr standen die Marillenbäume in der Wachau und im östlichen Flachland, nachdem der gesamte Winter und auch die erste Märzhälfte sehr mild ausfielen, Mitte März bereits in Vollblüte. Der starke Kälteeinbruch um die Monatswende von März zu April hat aber dann die Fruchtansätze häufig zerstört, weshalb die Ernte eher gering ausfiel. Auch heuer wurde nach den sehr milden Tagen gegen Februarende und Mitte März schon eine Wiederholung befürchtet, jedoch blieben die meisten Blüten vor der derzeitigen kühlen Wetterphase glücklicherweise noch geschlossen und somit wenig frostanfällig.

Die Knospen sind noch geschlossen. © https://www.wachauermarille.at/

Im langjährigen Mittel

Im Vergleich mit dem Mittel etwa der letzten 100 Jahren ist die Vegetationsentwicklung heuer nahezu im Durchschnitt, der mittlere Beginn der Forsythienblüte und damit des Erstfrühlings datiert auf Ende März. Die letzten Jahre seit 2014 waren aber um mehrere Wochen früher dran, mit Ausnahme von 2018: Da legten die Pflanzen nach einem anfänglichen Rückstand erst im April einen Schnelldurchlauf ein, der nach Ausbleiben von Spätfrösten schließlich in einer Rekordernte bei fast allen Obstsorten gipfelte. Insgesamt hat sich der phänologische Frühling seit etwa 1988 gegenüber den Jahrzehnten zuvor um ein bis zwei Wochen verfrüht.

Blühende Maillenbäume
Blühende Maillenbäume.

Aufholjagd steht bevor?

So gesehen sind wir heuer durchaus etwas verspätet, was in Hinblick auf mögliche Spätfröste die Landwirte und Gartenbetreiber aber positiv bewerten dürften. Wie vor drei Jahren gesehen, kann sich das aber rasch ändern und die Spätfrostgefahr ist damit noch nicht gebannt – siehe die beiden Vorjahre und auch 2017. Sogar nach den Eisheiligen, am 18. Mai, kam es 2012 nach einer ebenfalls warmen Vorgeschichte im Weinviertel noch verbreitet zu Frost. Paradoxerweise hat sich die Gefahr von Frostschäden mit dem Temperaturanstieg der letzten Jahrzehnte damit eher vergrößert, aufgrund der früheren Vegetationsentwicklung, siehe auch hier.

Aprilwetter im März bringt Schnee- und Graupelgewitter

Kaltluftgewitter

Österreich liegt seit Wochenbeginn unter dem Einfluss einer nördlichen Höhenströmung und in den Nordalpen stauen sich feuchtkühle Luftmassen. Auf den Bergen wie etwa auf der Seegrube oberhalb von Innsbruck ist teils schon über 1 Meter Neuschnee gefallen, aber auch in höheren Tälern vom Arlberggebiet bis zu den Kitzbüheler Alpen gab es mehr als 60 cm Neuschnee.

Schneehöhe 14.3. Schneehöhe am 17.3. 72h-Differenz
Mittelberg (V) 78 cm 143  cm 65 cm
Schröcken (V) 90 cm 158 cm 68 cm
Hochfilzen (T) 2 cm 65 cm 63 cm
Saalbach (S) 26 cm 76 cm 50 cm
Ramsau am Dachstein (ST) 5 cm 44 cm 39 cm
Leutasch (T) 39 cm 103 cm 64 cm
Viel Neuschnee in Vorarlberg. © www.foto-webcam.eu

Abseits der Alpen sorgt die Kombination aus Sonneneinstrahlung und kalter Höhenluft in dieser Jahreszeit dagegen für eine labile Schichtung der Luft, somit nimmt die Schauer- und Gewitterneigung tagsüber sowie in den Nachmittagsstunden deutlich zu. Von Mittwoch bis Freitag ist davon vor allem die Alpennordseite vom Außerfern über Oberösterreich bis zum Alpenostrand betroffen.

Vor allem an der Alpennordseite muss man bis Freitag mit lokalen Graupelgewittern rechnen. © uwz.at

Graupel vs. Hagel

Allgemein können Schauer und Gewitter je nach Temperaturprofil und Höhe der Nullgradgrenze Regen, Schnee oder Hagel bringen. In dieser Jahreszeit kommt allerdings häufig eine besondere Form des Niederschlags vor: Graupel. Fälschlicherweise wird Graupel oftmals als kleiner Hagel abgetan, eigentlich ist Graupel allerdings noch eine Schneeart. Durch anfrieren unterkühlter Wassertröpfchen werden Schneekristalle zu kleinen bis 5 mm großen Kügelchen verklumpt. Dazu ist die Dichte von Graupel geringer als von Hagel und die Oberfläche eher rau. Dadurch fallen sie langsamer und verursachen keine direkten Schäden.

Graupel
Graupelkörner © AdobeStock

Glättegefahr

Der Wechsel von Sonnenschein zu kräftigen Schauern und umgekehrt geht oftmals sehr schnell vonstatten, daher können Graupelschauer in kürzester Zeit für sehr rutschige Fahrbahnen sorgen. Nicht selten passieren bei solchen Lagen vermehrt Autounfälle. Neben der erhöhten Glättegefahr kann es weiters auch zu vorübergehenden Einschränkung der Sicht kommen.

Graupelschauer
Graupelschauer im Wienerwald am 16.3.21. © N. Zimmermann

Titelbild © AdobeStock

Begegnung mit einem kosmischen Felsbrocken

Ein kosmischer Felsbrocken fliegt am Sonntag an der Erde vorbei - so nahe allerdings nicht.

Nah und fern

Wie die großen Planeten bewegen sich  diese Asteroiden, auch Planetoiden oder Kleinplaneten genannt, auf Ellipsenbahnen um die Sonne. Hauptsächlich sind sie weit außerhalb der Erdbahn zwischen Mars und Jupiter unterwegs, zumindest kleinere Teile kommen aber immer wieder auch ’nahe‘ bei unserem Planeten vorbei.

Sternschnuppen entstehen durch kleine Bruchstücke von Asteroiden oder Kometen@AdobeStock.

Keine Gefahr

Das klingt erst einmal bedrohlich, nahe bezogen auf die Verhältnisse des Sonnensystems  kann jedoch auf die Erde übertragen eine riesige Distanz sein. So kommt uns dieser Asteroid nicht näher als knapp 2 Millionen Kilometer oder gut das 5-fache zur Entfernung zum Mond. Eine Kollision mit der Erde ist also auszuschließen. Die letzte vergleichbare Begegnung mit einem Asteroiden ähnlicher Größe fand am 22. Dezember 2018 statt.

…vorläufig

Wesentlich näher wird uns in acht Jahren der ca. 300 m messende Planetoid Apophis kommen, er wird die Erde „nur“ um 38.000 km verfehlen. Aber auch da besteht keine Kollisionsgefahr, was allerdings keine absolute Entwarnung bedeuten kann. So zog am 15. Februar 2013 ein schon drei Jahre bekannter Asteroid von 40 Metern, wie berechnet, in 28. 000 km Entfernung an der Erde vorbei. Am selben Tag lieferte jedoch ein ähnliches Objekt einen unerwarteten Treffer – die bekannte Meteoritenexplosion im nordrussischen Tscheljabinsk. Dieser Asteroid näherte sich der Erde aus Richtung der Sonne und konnte daher nicht vorher beobachtet werden. Auf kurze oder lange Sicht (astronomisch, also bis zu Jahrmillionen) gilt ein erneuter, dann global katastrophaler Treffer eines noch weit größeren Brockens sogar als sicher.

Sturm, Orkan und die Beaufortskala

Sturm Orkan

Phänomenologisch beschreibt die Beaufortskala die Wirkung der Windgeschwindigkeit, sowohl auf dem Land als auch auf dem Meer, in 13 Stärken bzw. Stufen von 0 (= Windstille, Flaute) bis 12 (= Orkan).

Beaufort
km/h Bezeichnung der Windstärke Bezeichnung des Seegangs Wirkung auf dem Land
0 0-1 Windstille, Flaute völlig ruhige, glatte See keine Luftbewegung
1 1-5 leichter Zug Ruhige, gekräuselte See kaum merklich, Windfahnen unbewegt
2 6-11 leichte Brise schwach bewegte See Blätter rascheln, Wind im Gesicht spürbar
3 12-19 schwache Brise schwach bewegte See Blätter und dünne Zweige bewegen sich
4 20-28 mäßige Brise leicht bewegte See Zweige bewegen sich
5 29-38 frische Brise mäßig bewegte See größere Zweige und Bäume bewegen sich, Wind deutlich hörbar
6 39-49 starker Wind grobe See dicke Äste bewegen sich, hörbares Pfeifen
7 50-61 steifer Wind sehr grobe See Bäume schwanken, Widerstand beim Gehen gegen den Wind
8 62-74 stürmischer Wind mäßig hohe See große Bäume werden bewegt, beim Gehen erhebliche Behinderung
9 75-88 Sturm hohe See Äste brechen, kleinere Schäden an Häusern, beim Gehen erhebliche Behinderung
10 89-102 schwerer Sturm sehr hohe See Bäume werden entwurzelt, Baumstämme brechen, größere Schäden an Häusern; selten im Landesinneren
11 103-117 orkanartiger Sturm schwere See heftige Böen, schwere Sturmschäden, schwere Schäden an Wäldern, Gehen ist unmöglich; sehr selten im Landesinneren
12 >117 Orkan außergewöhnlich schwere See schwerste Sturmschäden und Verwüstungen; sehr selten im Landesinneren

Sturm und Orkan

Als Sturm werden mittlere Windgeschwindigkeiten (über 10 Minuten gemessen) von mindestens 75 km/h oder 9 Beaufort bezeichnet. Wenn ein Sturm eine Windgeschwindigkeit von mindestens 118 km/h oder 12 Beaufort erreicht, spricht man hingegen von einem Orkan. Erreicht der Wind nur kurzzeitig Sturmstärke, also für wenige Sekunden, so spricht man von Sturmböen bzw. ab 118 km/h von Orkanböen. Beispielsweise wenn der Wind im Mittel mit 45 km/h weht, es aber Böen von 75 km/h gibt, handelt es sich nicht um einen Sturm, sondern um starken Wind mit Sturmböen. Manche Wetterdienste sprechen von einem Sturmtief allerdings bereits ab mittleren Windgeschwindigkeiten der Stärke 8  bzw. von einem Orkantief ab mittleren Windgeschwindigkeiten der Stärke 11.

Francis Beaufaurt

Die Beaufortskala verdankt ihren Namen den britischen Hydrographen Francis Beaufort, der die Skala 1806 das erste mal in dieser Form veröffentlichte. Gute 30 Jahre später wurde die Skala dann von der britischen Admiralität als verbindlich eingeführt, allerdings ohne auf Beaufort Bezug zu nehmen. Erst 1906 machte der britische Wetterdienst diese als ‚Beautfortskala‘ bekannt.

Titelbild © Adobe Stock

Ätna-Ausbruch verursacht heftigen Steinregen auf Sizilien

Ätna Ausbruch - Piermanuele Sberni / unsplash

Pünktlich gegen 8 Uhr am heutigen Morgen brach der 3326 m hohe Vulkan zum zehnten Mal in den letzten Tagen aus. Seit Mitte Februar kommt es im Schnitt jede 50 bis 60 Stunden zu einer Eruption.

Das heutige Ereignis war mit rund 30 Minuten nur von sehr kurzer Dauer, wie man aus der obigen Satellitenanimation (@EUMETSAT) gut sehen kann. Die Explosion war aber besonders kräftig und warf Lavasteine und Asche bis in eine Höhe von etwa 10 km. Neue Lavaströme wurden auch beobachtet, diese flossen aber wie alle Lavaströme, die aus den Gipfelkratern stammen in das unbewohnte und daher auch sichere Valle del Bove (it. für Tal des Ochsen).

#Etna – 07 Marzo 2021 | Ci siamo, dopo circa 80 ore il vulcano prepara la 10ª eruzione. Purtroppo la direzione del…

Pubblicato da EtNative – to explore Mount Etna su Sabato 6 marzo 2021

 

Geschätzt mehr als 5 Tonnen Vulkanmaterial wurden heute in die Luft geschleudert. Einen Großteil davon „regnete“ es aufgrund der mäßigen Westwinde entlang der Ionischen Küste Siziliens, rund um die Kleinstadt Giarre (Facebook-Bild oben mit der am schwersten betroffenen Region gelb-rot eingefärbt) ab. Hier bildetet sich binnen weniger Minuten eine zentimeterdicke Aschendecke. Vom Himmel fielen aber auch größere und mehrere Gramm schwere Lavasteine!

 

😱 Ancora immagini della pesante caduta di #cenere ma soprattutto #lapilli sui paesi #etnei di Milo, Fornazzo, Trepunti,…

Pubblicato da Tornado in Italia su Domenica 7 marzo 2021

 

 

 

 

#Etna – 07 Marzo 2021 | Il 10º parossismo, al cratere di sudest, della sequenza iniziata a febbraio21 si è appena…

Pubblicato da EtNative – to explore Mount Etna su Sabato 6 marzo 2021

 

 

Titelbild: Ätna Ausbruch – Piermanuele Sberni / unsplash

-68 Grad: Die kältesten bewohnten Orte der Welt

Der kälteste Ort liegt in der Antarktis

Ideale Bedingungen für eisige Temperaturen findet man in kontinentalen Gebieten, also weit weg vom Meer und besonders in Hochtälern sowie in Becken- oder Muldenlagen. Zusätzlich sind drei Wetterbedingungen für eine starke Abkühlung der Luft besonders förderlich:

  • windschwache Verhältnisse
  • sternenklarer Himmel bzw. sehr trockene Luft
  • schneebedeckter Boden

Gefrierschrank Sibirien

Die kältesten bewohnten Orte der Erde befinden sich im Nordosten Sibiriens in Russland. Werchojansk sowie Oimjakon halten die Rekorde bei den Tiefstwerten mit jeweils -67,8 Grad Celsius. Die Entfernung dieser Orte beträgt etwa 630 km und in dieser Gegend sind beinahe das ganze Jahr Hochdruckgebiete wetterbestimmend. Gebirgsketten umgeben die Region und sorgen für ausgeprägte Inversionswetterlagen. Das Meer hat kaum einen Einfluss auf das dortige Klima. Völlig normal dort: seit dem 10. Oktober herrscht in Oimjakon Dauerfrost. Seit Mitte November kommen die Temperaturen nicht mehr über -20 Grad hinaus, Anfang Dezember wurden schon -48 Grad gemessen!

Rekordhalter Antarktis

Es geht aber noch kälter! Der sogenannte Gefrierschrank der Erde befindet sich in der Antarktis in der südlichen Hemisphäre. Am Ostantarktischen Plateau befindet sich seit 1957 die russische Antarktisstation namens „Wostok“in etwa 3.500 m Höhe, 1287 km vom geographischen Südpol entfernt. Am 21. Juli 1983 wurden dort eisige -89,2 Grad Celsius gemessen. Im Jahr 2010 wurden −93,2 Grad  und im Juli 2004 sogar -98,6 Grad Celsius registriert. Diese Werte wurden aber nicht offiziell anerkannt, da sie anhand von Satellitendaten ermittelt wurden (statt mit einer Wetterstationen in 2 m Höhe über dem Boden gemessen).

Rekorde der Kontinente

Kontinent Wert und Datum Ort
Antarktis -89.2 °C  am 27.7.1983 Wostok-Station
Asien -67,8 °C am 7.2.1892

-67,8 °C am 6.2.1933

Werchojansk bzw. Oimjakon, Russland
Australien -23,0 °C am 29.6.1994 Charlotte Pass, NSW
Afrika -23,9 °C am 11.2.1935 Ifrane, Marokko
Nordamerika -63,0 °C am 3.2.1947 Snag, Yukon, Kanada
Südamerika -32,8 °C am 1.6.1907 Sarmiento, Argentinien
Europa -58,1 °C am 31.12.1978 Ust-Schtschuger, Russland
Europa (EU) -52,6 °C am 2.2.1966 Vuoggatjålme, Schweden

Anbei noch die tiefsten gemessenen Temperaturen in bewohnten Orten in Deutschland, Österreich und der Schweiz:

  • -41.8 Grad in La Brevine im Neuenburger Jura / CH (12.1.1987)
  • -37.8 Grad in Hüll/Wolnzach in Bayern / D (12.2.1929)
  • -36.6 Grad in Zwettl im Waldviertel / A (12.2. 1929 )

Noch tiefere Temperaturen wurden allerdings in manchen Senken bzw.  Dolinen in höheren Lagen der Alpen gemessen wie etwa im Grünloch in Österreich (-52.6 Grad), am Funtensee in Bayern (-45,9), auf der Glattalp in der Schweiz (-52,5) oder in der Busa Fradusta (-49,6) in Italien.

Kälteste Hauptstadt

Als kälteste Hauptstadt der Welt gilt mit einer Jahresdurchschnittstemperatur von -2 Grad Ulaanbaatar in der Mongolei. Die tiefste gemessene Temperatur in der Metropole mit 1,5 Millionen Einwohnern liegt bei -42,2 Grad. An zweiter Stelle folgt Astana in Kasachstan, wo es im Mittel zwar etwas milder ist, dafür die Extreme aber ausgeprägter sind.

Lawinen – die weiße Gefahr

Lawinen die weiße Gefahr

Derzeit herrscht in den Alpen verbreitet Lawienegefahr der Stufe 3 oder 4. Es ist also Vorsicht abseits der Pisten geboten. In den kommenden Tagen bleibt die Situation angespannt, steigende Temperaturen und starker Windeinfluss sorgen für einen ungünstigen Schneedeckenaufbau. Hier ein paar allgemeine Informationen zu Lawinen:

Verschiedene Typen von Lawinen

Am häufigsten treten Lockerschnee- und Schneebrettlawinen auf. Erstere haben ihren Ursprung in einem einzelnen Punkt, sie nehmen beim Abgang immer mehr Schnee auf und wachsen daher rasch an. Zweitere kennzeichnen sich durch einen linienförmigen Abriss quer zum Hang aus, dabei rutscht eine ganze Schicht auf einer anderer Schneeschicht oder auf dem Grund ab. Wenn die gesamte Schneedecke am Boden abgleitet, spricht man auch von Gleitschneelawinen.

Eine kleine Lockerschneelawine. © Nikolas Zimmermann
Eine kleine Lockerschneelawine. Bild © N. Zimmermann

Nassschneelawinen lösen sich ebenfalls als Schneebrett oder als Lockerschneelawine. Sie treten  vor allem im Frühjahr an Südhängen auf. Hauptauslöser von Nassschneelawinen ist flüssiges Wasser in der Schneedecke, das die Bindung der Schichtgrenzen schwächt. Staublawinen treten dagegen nur bei markanten Lagen mit viel Neuschnee auf und sind somit vergleichsweise selten zu beobachten.

Eine Schneebrettlawine. © Nikolas Zimmermann
Schneebrettlawinen auf einer Schwachschicht im Schnee. Bild © N. Zimmermann

Hangneigung und Schneemenge

Grundsätzlich ist eine gewisse Masse an Schnee notwendig, die sich an einem Hang mit einer Neigung von etwa 25° oder mehr ansammelt. Je größer die Neigung, desto öfter ist mit Lawinenabgängen zu rechnen. Andererseits können sich gerade auf nur mäßig steilen Hängen besonders große Schneemengen ansammeln, weshalb hier besonders viele Unfälle passieren. Ist der Hang zudem nach Norden ausgerichtet und damit weniger der Sonneneinstrahlung ausgesetzt, kann sich eine Schneedecke schlechter stabilisieren und eine mögliche Gefahrenstelle bleibt länger bestehen.

Beispielbild eines Schneebretts @ https://pixabay.com/de/users/hans-2/
Eine Gleitschneelawine in steilem Gelände.

Schwachschichten

Fällt viel Neuschnee in kurzer Zeit, ist dieser mit einer vorhandenen, bereits gesetzten Schneedecke vorübergehend schlecht verbunden. Erst nach ein paar Tagen – je nach Höhe und Exposition – kann sich der Neuschnee setzen und mit dem Altschnee verbinden. Auch ohne Neuschnee können die verschiedenen Schneeschichten allerdings große Unterschiede in der Beschaffenheit aufweisen, beispielsweise kann es zu einem Festigkeitsverlust in einer Schneeschicht durch die sogenannte aufbauende Schneeumwandlung kommen. Zudem kann es auch eingelagerte Schwachschichten geben wie eingeschneiter Oberflächenreif. Manchmal reicht somit bereits ein geringes Zusatzgewicht wie beispielsweise ein Skifahrer aus, um eine Schneeschicht ins Rutschen zu bringen.

Staublawinen treten nur bei markanten Lagen mit viel Neuschnee auf.

Faktor Wind

Der Wind spielt für Lawinen eine ganz entscheidende Rolle: Verfrachteter Schnee lagert sich auf windabgewandten Seiten von Hängen ab und es bilden sich Treibschnee und Schneewächten. Diese sind in der Regel für ein paar Tage nur schlecht verbunden zur unteren Schneeschicht und sind somit besonders leicht zu stören. Wenn Triebschnee von frischem Neuschnee überlagert wird und somit schlecht zu erkennen ist, dann ist die Lage besonders brenzlig.

Wind und Schnee © Nikolas Zimmermann
Wind und Schnee stellen eine gefährliche Kombination dar. Bild © N. Zimmermann

Foto: Kecko on Visual Hunt / CC BY

Die Stratosphäre und der Polarwirbel

Die Stratosphäre und der Polarwirbel

Die Atmosphäre der Erde ist die gas­förmige Hülle der Erdoberfläche und erstreckt sich vom Boden bis etwa 10.000 km Höhe. Der Druck, die Temperatur sowie der Gehalt an Gasen sind allerdings sehr variabel, somit kann man die Erdatmosphäre in mehrere Schichten unterteilen:

  • Troposphäre: vom Boden bis zur Tropopause in ca. 10-15 km Höhe
  • Stratosphäre: von der Tropopause bis zur Stratopause in ca. 50 km Höhe
  • Mesosphäre: von der Stratopause bis zur Mesopause in ca. 85 km Höhe
  • Thermosphäre: von der Mesopause bis in ca. 500 km Höhe
  • Exosphäre: von 500 bis ca 10.000 km Höhe

In der Troposphäre sind etwa 90 Prozent der Luft sowie beinahe der gesamte Wasserdampf enthalten. Hier spielt sich das Wetter ab und die Temperatur nimmt im Mittel um etwa 6,5 Grad pro Kilometer Höhe ab. Ab einer Höhe von etwa 7 km (Polargebiete) bzw. 17 km (Tropen) geht die Temperatur aber nicht mehr weiter zurück sondern beginnt allmählich wieder anzusteigen. Hier beginnt die Stratosphäre.

Beständige Inversion

Meteorologen bezeichnen so eine Umkehr der Temperaturschichtung als Inversion. Man muss allerdings nicht bis in die Stratosphäre aufsteigen, um eine Temperaturumkehr zu erleben, denn auch innerhalb der Troposphäre können beispielsweise winterliche Kaltluftseen für Inversionen sorgen. Die Luftschichtung ist dann stabil und ein Luftaustausch in vertikaler Richtung findet nicht statt. Die Stratosphäre stellt allerdings eine beständige Grenze für aufsteigende Luftmassen dar. Daher gelangen Wolken und Wasserdampf in der Regel nicht in die Stratosphäre, von einem eigentlichen Wettergeschehen kann in diesen Höhen nicht mehr die Rede sein. Aus einem Verkehrsflugzeug, das im Bereich der Tropopause fliegt, kann man diese Sperre für jegliche Wolken an der nach oben abrupt dunkler werdenden Himmelsfarbe erkennen. Der Temperaturanstieg oberhalb der Tropopause ist auf die Absorption der UV-Strahlung durch das Ozon in gut 50 km Höhe zurückzuführen: Hier erwärmt sich die Luft von etwa –60 Grad bis auf knapp unter 0 Grad.

Der Polarwirbel

Der Polarwirbel ist ein großräumiges Höhentief über der Arktis (bzw. Antarktis), das sich im Winter von der mittleren und oberen Troposphäre über die gesamte Stratosphäre erstreckt. Er ist gefüllt mit sehr kalter Luft, die in der Stratosphäre Werte unter -80 Grad erreichen kann. Der Polarwirbel ist normalerweise relativ rund um den Pol angeordnet. Wenn er stark ausgeprägt ist, begünstigt er einen von West nach Ost verlaufenden Jetstream in der Troposphäre, weshalb das Wetter in den mittleren Breiten dann oft mild ausfällt, wie zuletzt etwa im Winter 2019/20.

Der Polarwribel mäandriert
Beispiele für einen ungestörten (links) und gespaltenen Polarwirbel (rechts). © NOAA

SSW vs. starker Wirbel

Der Polarwirbel kann aber gestört oder gar gespalten werden, wie etwa im Fall einer sogenannten plötzlichen Stratosphärenerwärmung (sudden stratospheric warming, SSW): In etwa 25 km Höhe gibt es dabei innerhalb weniger Tage einen Temperaturanstieg von mehr als 50 Grad! Die Spaltung des Polarwirbels kann sich im Laufe von zwei bis vier Wochen auch auf das Westwindband in der Troposphäre auswirken und dieses verlangsamen oder unterbrechen. Während in der Polarregion dann überdurchschnittliche Temperaturen verzeichnet werden, steigen in den mittleren Breiten die Chancen auf markante Kaltluftausbrüche wie beispielsweise im Februar und März 2018. Die Auswirkungen können allerdings auch gering bleiben, so gab es etwa auch im Jänner 2019 eine plötzliche Stratosphärenerwärmung, die jedoch kaum Einfluss auf die Troposphäre hatte. Im Winter 2019/20 war der Polarwirbel außergewöhnlich stark, aktuell ist es hingegen sehr schwach da eine plötzliche Stratosphärenerwärmung stattfindet.

Rand des Weltalls?

Vom „Edge of Space“ war anlässlich des Stratospärensprungs im Jahr 2012 die Rede. Tatsächlich liegen in 39 km Höhe schon über 99 % der atmosphärischen Masse unter einem. Rein räumlich gesehen ist die Lufthülle in dieser Höhe aber noch lange nicht zu Ende. Es folgen nach oben noch die Meso-, Thermo- und Exosphäre. Die Grenze zwischen den Stockwerken stellt jeweils wieder eine Umkehr im Temperaturverlauf dar. Besonders kalt ist es mit Temperaturen um -100 Grad in etwa 85 km Höhe im Bereich der Mesopause.

Plötzliche Stratosphärenerwärmung: Kommt eine Kältewelle?

Der stratosphärische Polarwirbel ist ein großräumiges Höhentief über der Arktis, das sich in einer Höhe zwischen 10 und 50 km befindet. Er ist gefüllt mit sehr kalter Luft, die in der Stratosphäre Werte um -80 Grad erreichen kann. Ein stark ausgeprägter Polarwirbel sorgt in den mittleren Breiten meist für mildes, westwinddominiertes Wetter. Wenn der Polarwirbel aber von der Arktis verdrängt wird oder in mehrere Teile gespalten wird, steigen die Chancen auf markante Kaltausbrüche in Mitteleuropa an.

Die mittlere zonale Windkomponente „U“ in 30 km Höhe ändert sich von West (27 m/s) aus Ost (-18 m/s) . © ECMWF / FU Berlin

Plötzliche Stratosphärenerwärmung

In manchen Jahren kommt es im Winter zu einer sogenannten plötzlichen Stratosphärenerwärmung über der Arktis, wobei es in etwa 25 km Höhe innerhalb weniger Tage einen Temperaturanstieg von mehr als 50 Grad gibt. Der stratosphärische Polarjet wird dabei unterbrochen und es kommt zu einer Umkehr der West- in Ostwinde. Die Auswirkungen können zeitlich etwas verzögert über Wochen hinweg zu spüren sein, weshalb auch länger andauernde Kältephasen möglich sind, wie beispielsweise im Februar 2018 (unter Meteorologen bzw. im englischen Sprachraum als „the Beast from the East“ bekannt).


Die saisonalen Prognosemodelle haben bislang für den Hochwinter überdurchschnittlich hohe Temperaturen in Europa und vor allem in Russland berechnet, definitiv keine rosigen Aussichten für Winterfreunde. Derzeit liegt Europa allerdings unter dem Einfluss eines umfangreichen Tiefdruckgebiets, welches milde Luft zum Schwarzen Meer führt, während kalte Luftmassen weite Teile Westeuropas erfasst haben.

Prognose der Temperaturabweichungen für Jänner und Februar von CFS. © NOAA

Kälte ab Ende Januar?

Für die zweite Monatshälfte sowie den Februar werden die Karten aufgrund der plötzlichen Stratosphärenerwärmung bzw. des schwachen Polarwirbels neu gemischt. Erste Modelle berechnen ab etwa der zweiten Januarhälfte unterdurchschnittliche Temperaturen in Skandinavien und im Norden Russlands – ganz im Gegensatz zu den bisherigen saisonalen Prognosen. Wenn dort sehr kalte Luft lagert, ist der Weg bis nach Deutschland jedenfalls nicht mehr so weit. Die Prognoseunsicherheit für den weiteren Winter ist größer denn je, die Aussichten für Winterfreunde stehen nun aber etwas besser als noch vor ein paar Wochen.

Ausblick für den Januar. © EFFIS / ECMWF

Plötzliche Stratosphärenerwärmung: Wie wird der Hochwinter?

Der stratosphärische Polarwirbel ist ein großräumiges Höhentief über der Arktis, das sich in einer Höhe zwischen etwa 10 und 50 km befindet. Wie jedes Tiefdruckgebiet auf der Nordhalbkugel dreht sich der arktische Polarwirbel gegen den Uhrzeigersinn. Er ist gefüllt mit sehr kalter Luft, die in der Stratosphäre Werte um -80 Grad erreichen kann. Seine Stärke hängt vom Temperaturunterschied zwischen dem Äquator und den Polen ab, daher erreicht er seine maximale Ausprägung meist im Jänner. Ein stark ausgeprägter Polarwirbel – wie zuletzt im Winter 2019/20 der Fall – sorgt in den mittleren Breiten meist für mildes, westwinddominiertes Wetter. Wenn der Polarwirbel aber von der Arktis verdrängt wird oder in mehrere Teile gespalten wird, steigen die Chancen auf markante Kaltausbrüche in den mittleren Breiten an. Die aktuellen Modellprognosen deuten nach dem Jahreswechsel auf einen stark gestörten Polarwirbel.

Die mittlere zonale Windkomponente „U“ in 30 km Höhe ändert sich von West (27 m/s) aus Ost (-18 m/s) . © ECMWF / FU Berlin

Plötzliche Stratosphärenerwärmung

In manchen Jahren kommt es im Winter zu einer sog. plötzlichen Stratosphärenerwärmung über der Arktis, wobei es in etwa 25 km Höhe innerhalb weniger Tage einen Temperaturanstieg von mehr als 50 Grad gibt. Der stratosphärische Polarjet wird dabei unterbrochen und es kommt zu einer Umkehr der West- in Ostwinde. Mit einer Verzögerung von ein paar Wochen kann sich diese Umkehr auch in der Troposphäre bemerkbar machen: Der Jetstream verlagert sich südwärts bzw. mäandriert stärker, somit steigen die Chancen für markante Kaltluftausbrüche in mittleren Breiten deutlich an. Die Auswirkungen können zudem über Wochen hinweg zu spüren sein, weshalb auch länger andauernde Kältephasen möglich sind, wie beispielsweise im Februar 2018 (unter Meteorologen bzw. im englischen Sprachraum als „the Beast from the East“ bekannt).


Die saisonalen Prognosemodelle haben bislang für den Hochwinter überdurchschnittlich hohe Temperaturen in Europa und vor allem in Russland berechnet, definitiv keine rosigen Aussichten für Winterfreunde. Derzeit liegt Europa allerdings unter dem Einfluss eines umfangreichen Tiefdruckgebiets, welches milde Luft zum Schwarzen Meer führt, während kalte Luftmassen weite Teile Westeuropas erfasst haben. Österreich liegt dabei genau im Übergangsbereich, wobei sich der Tiefdruckeinfluss und die kalten Luftmassen am Rande eines blockierenden Hochs über dem Nordatlantik nach dem Jahreswechsel tendenziell etwas ostwärts verlagern. Aus heutiger Sicht zeichnet sich somit auch hierzulande in der ersten Monatshälfte bzw. ggbfs auch noch zur Monatsmitte ein winterlicher Wetterabschnitt mit Schnee auch in tiefen Lagen ab.

Prognose der Temperaturabweichungen für Jänner und Februar von CFS. © NOAA

Für die zweite Monatshälfte sowie den Februar werden die Karten aufgrund der plötzlichen Stratosphärenerwärmung bzw. des schwachen Polarwirbels neu gemischt. Erste Modelle berechnen ab etwa der zweiten Jännerhälfte unterdurchschnittliche Temperaturen in Skandinavien und im Norden Russlands – ganz im Gegensatz zu den bisherigen saisonalen Prognosen. Wenn dort sehr kalte Luft lagert, ist der Weg bis nach Mitteleuropa jedenfalls nicht mehr so weit. Die Prognoseunsicherheit für den Kern des Winters ist größer denn je, die Karten für Winterfreunde stehen nun aber etwas besser als noch vor ein paar Wochen.

Ausblick auf den Jänner. © EFFIS / ECMWF

Die Lawinenwarnstufen

Lawinenwarnschild. @Wikimedia Commons/Root5.5

Die Lawinensituation wird von den regionalen Lawinenwarndiensten beurteilt und dementsprechend die Warnstufe in Kombination mit einem Lagebericht ausgegeben. In der Regel wird die Lawinengefahr ab dem ersten großen Schneefall täglich aktualisiert. Die Informationen kann man auf den Homepages der jeweiligen Dienste abrufen.

Seit 1993 dient die ‚Europäische Gefahrenskala für Lawinen‘ zur Einschätzung der Lawinengefahr in den Bergen. Diese Skala gliedert sich nach der Lawinengefahr aufsteigend in fünf Stufen:

  • Stufe 1: gering
    Die vorhandene Schneedecke ist sehr gut verfestigt und stabil, somit ist die Lawinengefahr gering. Nur an wenigen, sehr steilen Hängen sind aufgrund hoher Zusatzbelastung (z.B. einer Skitourengruppe ohne Abstand) Lawinen möglich. Ansonsten kann es lediglich zu kleinen Rutschungen kommen.
  • Stufe 2: mäßig
    In einigen Hängen, welche steiler sind als 30 Grad, ist die Schneedecke nur mäßig verfestigt. Insbesondere in diesen Hängen sind bei großer Zusatzbelastung Lawinen möglich, ansonsten herrschen aber gute Tourenbedingungen vor. Einzelne spontane, nicht allzu große Lawinen sind dennoch nicht ausgeschlossen.
@ https://stock.adobe.com
  • Stufe 3: erheblich
    Eine Auslösung von Lawinen ist in Steilhängen mit einer Neigung von mehr als 30 Grad bereits von einzelnen Skifahrern möglich. Die Tourenmöglichkeiten sind somit eingeschränkt und erfordern lawinenkundliches Beurteilungsvermögen. Selbst ohne Fremdeinwirkung sind mittlere, vereinzelt auch größere Lawinen an exponierten Stellen möglich. Die Stufe 3 ist besonders heimtückisch und wird meist unterschätzt, so passieren bei Lawinenwarnstufe 3 die meisten tödlichen Unfälle!
  • Stufe 4: groß
    Eine Lawine kann bereits bei geringer Zusatzbelastung ausgelöst werden. Auch spontane Auslösungen, also ohne menschliches Zutun, sind wahrscheinlich. Die Tourenbedingungen sind somit stark eingeschränkt!
  • Stufe 5: sehr groß
    Die Schneedecke ist allgemein nur schwach verfestigt und instabil, somit kann es selbst ohne Zusatzbelastung zu großen bis sehr großen Lawinen kommen. Diese sind auch in mäßig steilem Gelände zu erwarten. Von Skitouren ist somit ausdrücklich abzuraten, insbesondere da man bei einem etwaigen Unglück auch die Bergretter in Gefahr bringt!

Die unterschiedlichen Webauftritte der regionalen Lawinenwarndienste von Österreich, der Schweiz und Deutschland sowie anderen Gebieten Europas sind unter diesem Link verfügbar.

Schneebringer Adria

Winter und Schnee

Wenn kalte Luftmassen westlich der Alpen in den Mittelmeerraum vordringen, bewirken sie dort in der Regel die Bildung eines Tiefdruckgebiets. Diese sogenannten Italientiefs führen oft sehr feuchte Luftmassen nach Österreich und manchmal ziehen sie in weiterer Folge über die Adria hinweg nach Nordosteuropa. Dann bestehen auch im Osten und Südosten Österreichs die größten Chancen auf Schneefall. Allgemein kann man zwischen zwei typischen Wetterlagen unterscheiden, welche im Süden bzw. Osten mit großen Niederschlagsmengen verbunden sind:

  • Ergiebiger Südstau
  • Vb-Tief („Fünf-b-Tief“)

Ein weiterer Spezialfall ist die sog. Gegenstromlage, mehr dazu findet ihr hier.

Südstau

Nahezu ortsfeste Tiefdruckgebiete über dem westlichen Mittelmeerraum sorgen in Österreich für eine anhaltende Südströmung. Bevor die Luft auf die Alpen prallt, nimmt sie über dem Mittelmeerraum viel Feuchtigkeit auf und wird in weiterer Folge vor allem in den Karnischen und Julischen Alpen sowie in den Hohen Tauern wie ein Schwamm ausgepresst (weitere Details dazu gibt es hier). In Österreich sind davon vor allem Osttirol und Oberkärnten betroffen. Besonders im Herbst sorgen Kaltluftvorstoße über den noch relativ milden Gewässern rund um Italien zudem für eine labile Schichtung der Luft, weshalb die Niederschläge besonders intensiv ausfallen.  Trotz der eigentlich recht milden Luftmasse kann die Schneefallgrenze dabei bis in manche Tallagen absinken: Die Schmelzwärme des Schnees, die der Umgebung entzogen wird, sorgt nämlich in engen Tälern für eine Abkühlung der Luft bis auf 0 Grad.

Tief VAIA sorgt für Wetterextreme in Mitteleuropa.
Tiefs über dem westlichen Mittelmeerraum sorgen für Südstau (Bild: Sturm VAIA).

Vb-Tief

Wenn sich Tiefdruckgebiete von Norditalien über Slowenien und Ungarn in Richtung Baltikum verlagern, sprechen Meteorologen von einem Tief mit einer Vb-Zugbahn („Fünf-b-Tief“). Solche Tiefdruckgebiete bringen vor allem im Südosten und Osten Österreichs teils große Regen- oder Schneemengen: Feuchte Adrialuft gleitet nämlich bei solchen Wetterlagen oft auf kühle Luftmassen in tiefen Schichten auf, weshalb die gesamte Luftsäule Temperaturen um oder knapp unterhalb des Gefrierpunkts aufweist.

Vb-Tief
Bereits vor über 100 Jahren hat Van Bebber die häufigsten Tief-Zugbahnen analysiert.

Schnee und Klimawandel

Die Klimawandel sorgt bekanntermaßen für steigende Temperaturen im Alpenraum, weshalb die Anzahl an Tagen mit einer Schneedecke besonders in tiefen Lagen deutlich abnimmt: Die winterliche Nullgradgrenze ist in den letzten 50 Jahren im Mittel um etwa 250 m angestiegen. Dieser Trend wird sich fortsetzen, so wird die Nullgradgrenze wohl noch vor 2050 im Winter durchschnittlich über einer Seehöhe von 1000 m liegen. Dadurch nimmt die Länge des Winters ab, gemessen an der Tage mit Schneedecke: Der Schnee kommt später und schmilzt früher. Etwa in Arosa in der Schweiz hat sich die Periode mit einer Schneedecke von mindestens 40 cm bereits von fünfeinhalb Monaten auf etwas mehr als drei Monate verkürzt. Studien aus der Schweiz zeigen, dass derzeit Lagen unterhalb von 1300 m davon besonders stark betroffen sind, während es in Lagen oberhalb von etwa 2000 m keinen klaren Trend gibt.

Klimawandel in Arosa
Mittlerer Verlauf der Schneehöhe in Arosa. Mehr Details dazu gibt es hier: Meteoschweiz

Extremereignisse

Besonders in den Alpen kann es in manchen Jahren aber zu Extremereignissen kommen, wie wir es etwa im Jänner 2019 an der Alpennordseite oder im November 2019 sowie Dezember 2020 in den Südalpen erlebt haben. Tatsächlich kann mildere Luft nämlich mehr Feuchtigkeit aufnehmen als kalte, zudem sorgen die steigenden Wassertemperaturen rund um Mitteleuropa (Nordsee, Mittelmeer) bei Kaltluftvorstoßen für eine labile Schichtung der Luft. Bei manchen Wetterlagen kann es also besonders von mittleren Höhenlagen aufwärts ergiebig schneien, zudem kann die Schneefallgrenze durch die Niederschlagskühlung auch im Einflussbereich relativ milder Luftmassen manchmal bis in windgeschützte Täler absinken. Dadurch nimmt die Gefahr von Schneebruch und Gleitschneelawinen tendenziell zu. Laut manchen Studien soll es zudem auch eine Zunahme an blockierten Wetterlagen geben, was ebenfalls größere Niederschlagsextreme zur Folge hat. Andererseits kann es aber je nach Lage der Tiefs und Hochs auch zu ungewöhnlich langen trockenen Phasen kommen.

Titelbild © www.foto-webcam.eu

Reif, Raureif und Raueis

Ein häufiges Phänomen bei stabilen Hochdruckwetterlagen mit klaren Nächten im Winter ist der Reif. Während er im Flachland meist tagsüber wieder sublimiert, kann er sich in schattigen Tallagen über mehrere Tage hinweg halten: Der Reifansatz wird nämlich Nacht für Nacht etwas mächtiger. In extrem feuchten und schattigen Lagen, etwa entlang von Bächen und Flüssen, können die Reifkristalle mehrere Zentimeter groß werden. Besonders in West-Ost ausgerichteten Tälern kann man den starken Kontrast zwischen grünen, sonnigen Südhängen und reifig-weißen, schattigen Nordhängen bzw. Talböden beobachten.

Raureif
Raureif und Nebel in der Buckligen Welt. © www.foto-webcam.eu

Entstehung von Reif

Die Luft kann je nach Temperatur nur eine bestimmte Menge an Wasserdampf aufnehmen. Dabei gilt: Je höher die Temperatur, desto mehr Wasserdampf kann sie fassen. Kommt die Luft jedoch in Kontakt mit kalten Oberflächen, dessen Temperatur kälter als der eigene Taupunkt ist, kühlt sie sich ab und kann den gespeicherten Wasserdampf nicht mehr halten (siehe auch Taupunkt). Der Wasserdampf wächst bei Temperaturen unterhalb des Gefrierpunkts in Form von Eiskristallen typischerweise an Grashalmen oder Autos an. Dabei handelt es sich um Eisablagerungen in Form von Schuppen, Nadeln oder Federn. Dieser Prozess, bei dem der Wasserdampf der Luft in den festen Zustand übergeht, nennt man Resublimation.

Raureif

Raureif ist ein fester Niederschlag, der bei hoher Luftfeuchtigkeit, wenig Wind und kalten Temperaturen unter etwa -8 Grad an freistehenden Gegenständen wie etwa Bäume oder Zäune durch Resublimation entsteht (oft innerhalb einer Wolke bzw. bei Nebel). Er besteht meist aus dünnen, an Gegenständen nur locker haftenden und zerbrechlichen Eisnadeln oder -schuppen.

Raureif
Raureif im Wienerwald am 2.12.2020. © N. Zimmermann

Raueis

Raueis bzw. Raufrost entsteht meist bei Temperaturen knapp unter dem Gefrierpunkt und erhöhten Windgeschwindigkeiten, wenn unterkühlte Nebel- oder Wolkentropfen auf freistehende Gegenstände treffen. Raueis wächst entgegen der Windrichtung und ist relativ fest. Durch Lufteinschlüsse erscheint es milchig weiß.


Klareis

Eine weiter Form der Frostablagerung ist das Klareis. Es handelt sich um eine glatte, kompakte und durchsichtige Eisablagerung mit einer unregelmäßigen Oberfläche. Klareis entsteht bei Temperaturwerten zwischen 0 und -3 Grad durch langsames Anfrieren von unterkühlten Nebeltröpfchen an Gegenständen und kann zu schweren Eislasten anwachsen.

Klareis im Wienerwald am 19.12.2020. ©: M. Beisenherz

Titelbild: N. Zimmermann

Altocumulus Lenticularis – Die Linsenwolke

Diese ästhetischen Wolken, im Fachjargon Altocumulus lenticularis, also “linsenförmige hohe Haufenwolken” genannt, entstehen wenn ein in der Luftströmung stehender Berg von mäßig feuchter Luft überströmt wird. Die zunächst nicht gesättigte Luft kühlt beim Aufsteigen bis zur Wolkenbildung ab, an der Rückseite des Berges sinkt die Luft hingegen wieder ab und die Wolke löst sich auf. Die Luft weht also durch diese ortsfeste Wolke hindurch und während sich die Wolke am windzugewandten Ende dauernd neu bildet, löst sie sich am windabgewandten Ende ständig auf. Im Alpenraum werden sie meist als Föhnfische bezeichnet, da ihre Form an den Körper eines Fisches ohne Flossen erinnert.

Diese Wolken entstehen speziell bei einer stabil geschichteten Atmosphäre, also vorwiegend zwischen Herbst und Spätwinter, und können bei ausreichender Feuchte auch mehrere Stockwerke aufweisen. Aktuell kursieren beeindruckende Aufnahmen aus dem kanadischen Alberta im Internet:

Auch in den Alpen häufig

In den Alpen treten solche Wolken in der Regel bei Föhn auf, nicht selten allerdings auch bei einer westlichen Höhenströmung. Ein paar schöne Beispiele von Lenticularis folgen unten bzw. gibt es auch hier: Föhnwolken – Beeindruckende Aufnahmen aus Vorarlberg

 

Der abendliche Himmel über Schwarzenbach (NÖ) am 4.12.2020. Quelle: foto-webcam.eu
Der abendliche Himmel über Schwarzenbach (NÖ) am 4.12.2020. Quelle: foto-webcam.eu

 

Föhnwolken über dem Lungau. Quelle: https://www.foto-webcam.eu/webcam/obertauern2/2020/12/04/1010
Föhnwolken über dem Lungau. Quelle: foto-webcam.eu

 

Am 4.12. sorgter der Sonnenaufgang für eine malerische Farbgegbung. Quelle: foto-webcam.eu
Am 4.12. sorgter der Sonnenaufgang für eine malerische Farbgegbung. Quelle: foto-webcam.eu

 

Föhnwolken in der Schweiz. © www.foto-webcam.eu
Föhnwolken in der Schweiz. © www.foto-webcam.eu

 

Föhnfische am Schneeberg. © https://www.panomax.com/en.html
Föhnfische am Schneeberg in Niederösterreich. © https://goldbergen.panomax.com/

 

Titelbild: Pittoreske Stimmung in Biella/Piedmont am 29.10.2017 (Quelle: Adobe Stock)

Weiße Weihnachten: Trend und Klimatologie

Weihnachten

Weiße Weihnachten in den Niederungen sind generell selten. Allgemein spielt dabei die Seehöhe eine wichtige Rolle: Ab einer Höhe von etwa 500 m liegt die Wahrscheinlichkeit im Mittel bei 40 %, in 800 m Höhe bei 70 % und ab 1.200 m über 90 %.

Wahrscheinlichkeit für Schnee am 24. Dezember und maximale Schneehöhe seit 1951 @ UBIMET
Wahrscheinlichkeit für Schnee am 24. Dezember und maximale Schneehöhe seit 1951 @ UBIMET

Wahrscheinlichkeit nimmt ab

Die Wahrscheinlichkeit für weiße Weihnachten im Flachland nimmt im Zuge des Klimawandels ab, so hat sich die Zahl der Tage mit Schnee am 24. Dezember seit Anfang der 80er Jahre in etwa halbiert. Vor allem in den 2000ern hat die Häufigkeit deutlich abgenommen: In Wien und Eisenstadt war es letztmals vor acht Jahren weiß. In Innsbruck wurde im Jahr 2017 zwar eine Schneedecke von 2 cm Schnee gemeldet, tatsächlich handelte es sich dabei aber nur um die letzten Reste einer Altschneedecke am Stadtrand. Am längsten ohne Schnee zu Weihnachten auskommen muss man in Sankt Pölten, wo zuletzt 2007 am 24. Dezember Schnee lag.

Weiße Weihnachten in den Landeshauptstädten stellen mittlerweile die Ausnahme dar. © UBIMET

Viel Schnee im Jahr 1969

Besonders in den 60er Jahren lag zu Weihnachten häufig Schnee, in Klagenfurt war es damals sogar jedes Jahr weiß. Die Rekorde aus dem Jahr 1969 im Norden und Osten haben bis heute Bestand: Damals gab es in Wien 30 cm, in Eisenstadt 39 cm und in Sankt Pölten sogar 50 cm der weißen Pracht. Letztmals Schnee in allen Landeshauptstädten zu Weihnachten gab es hingegen im Jahr 1996.

Klimatologische Wahrscheinlichkeit für Neuschnee zu Heilig Abend. © UBIMET

Titelbild © Adobe Stock

Richtig lüften im Winter

Winterfenster @ https://pixabay.com/de/users/jill111-334088/

Stoß- statt Dauerlüften

Wer ständig die Fenster gekippt hat und gleichzeitig heizt, wirft das Geld buchstäblich zum Fenster hinaus. Dauerhaft gekippte Fenster kühlen Räume und Wände aus. Statt Dauerlüften wird Stoßlüften empfohlen. Am Besten ihr öffnet morgens, nach der Arbeit und abends alle Fenster in der Wohnung für einige Minuten, um ordentlich durchzulüften. Wer tagsüber daheim ist, der sollte versuchen vier- oder fünfmal am Tag zu lüften. Falls die Fenster gegenüber liegen ist das ideal und beide können gleichzeitig geöffnet werden. Falls nicht, könnt ihr Türen öffnen um einen kurzen Durchzug zu schaffen.

Schimmelbildung vermeiden

Wer im Winter nicht lüftet, der riskiert Schimmelbildung. Die feuchte Raumluft bleibt in den Zimmern stehen und an den Wänden bildet sich Schimmel. Vor allem im Badezimmer und in der Küche ist Lüften essenziell, da hier besonders viel Feuchtigkeit entsteht. Auch hier sind einige Minuten Stoßlüften ausreichend.

Heizkörper @ https://pixabay.com/de/users/ri-138286/
Heizkörper @ https://pixabay.com/de/users/ri-138286/

Heizkörper @ https://pixabay.com/de/users/ri-138286/

Heizung ausschalten

Während ihr stoßlüftet, schaltet bitte die Heizung aus. Da die Heizung versucht gegen die plötzliche Kälte anzukämpfen, wird sehr viel Energie verschwendet.

Gesund wohnen

Im Winter strapaziert und reizt die trockene Heizungsluft die Schleimhäute. Ihr seid somit anfälliger auf Erkältungskrankheiten. Wer im Winter jedoch richtig lüftet, sorgt dafür, dass trockene, abgestandene Luft gegen frische Luft im Zimmer ausgetauscht wird. Gegen die trockene Heizungsluft im Winter helfen Grünpflanzen oder Raumbefeuchter, denn sie erhöhen die Luftfeuchtigkeit.

 

Titelbild: @ https://pixabay.com/de/users/jill111-334088/

Planeten-Rendezvous im Dezember 2020

Sternenhimmel

Jupiter und Saturn am frühen Abendhimmel

Nach dem frühen Sonnenuntergang, der in Wien etwa schon um vier Uhr nachmittags stattfindet, fallen zurzeit in der hereinbrechenden Nacht ungefähr eine Stunde später zwei helle, tief stehende „Sterne“ Richtung Süd bis Südwest auf: die Planeten Jupiter und Saturn. Dass es sich nicht um Fixsterne handelt, wird schnell klar, denn von Tag zu Tag verringert sich der Abstand zwischen den beiden. Wenn das Wetter mitspielt, bietet sich also eine schöne Gelegenheit an, um die Planetenbewegungen selbst zu verfolgen!

Große Konjunktion

Der hellere Jupiter steht zunächst rechts unterhalb von Saturn, bis er am 21.12.2020 ganz knapp am Saturn vorbeizieht. Wer nicht genau hinsieht oder keine guten Augen hat, sieht an diesem Abend wohl nur einen, vielleicht etwas länglich erscheinenden Lichtpunkt. Selbst im Teleskop zeigen sie sich bei nicht zu starker Vergrößerung gemeinsam im Gesichtsfeld. Dann sind auch ihre Ringe bzw. Monde zu sehen, wie sie von Abbildungen bekannt sind. Mit freien Augen oder auch mit einem kleineren Feldstecher sehen sie einfach aus wie zwei helle Sterne. Allerdings muss man sich nach Sonnenuntergang beeilen, sie noch am Südwesthimmel zu sehen, bevor sie bereits gegen 18:00 MEZ untergehen. Anfang Jänner 2021 beenden sie schließlich gemeinsam ihre Abendsichtbarkeit bis zum Spätsommer. Dann steht Jupiter östlich („links“) vom Saturn und läuft ihm langsam davon, d.h. der Abstand vergrößert sich in der Folgezeit wieder.

Bereits Anfang Dezember kommen sich Jupiter und Saturn sehr nahe (Blick nach SW). © www.stellarium-web.org

Nur Perspektive

Tatsächlich kommen sich die beiden großen Planeten nicht wirklich nahe, ihr räumlicher Abstand beträgt stolze 833 Millionen Kilometer. Von unserem Standpunkt auf der Erde aus gesehen, steht Saturn aber fast genau hinter seinem sonnennäheren Kollegen. Diese Phänomen, das auch als „Große Konjunktion“ bezeichnet wird, tritt etwa alle 20 Jahre auf. In der Perspektive (an den irdischen Himmel projiziert) ist dies allerdings ihr engstes Treffen seit fast 400 Jahren!

Titelbild © AdobeStock

Der früheste Sonnenuntergang des Jahres

Der früheste Sonnenuntergang des Jahres

Der kürzeste Tag des Jahres ist der 21. Dezember, dann erreicht die Sonne in den Breiten unterhalb des südlichen Wendekreises den Höchststand. Nördlich des Polarkreises (66,57° N) ist es dagegen durchgehend finster.

Der früheste Sonnenuntergang findet bereits vor der Sonnenwende statt
Die Tageslänge im Laufe des Jahres (grau = Nacht; weiß = Tag).

Aufgrund der Neigung der Erdachse und der elliptischen Umlaufbahn unseres Planeten erfolgt der früheste Sonnenuntergang des Jahres hierzulande bereits am 11. Dezember und nicht erst zur Wintersonnenwende am kürzesten Tag. Den spätesten Sonnenaufgang gibt es hingegen erst zu Neujahr, danach nimmt die Tageslänge sowohl am Morgen als auch am Abend langsam wieder zu.

Anbei eine Übersicht (Sonnenaufgang und Sonnenuntergang):

11. Dezember 21. Dezember 1. Januar
Wien 7:35 bis 15:59 7:42 bis 16:02 7:45 bis 16:10
Berlin 8:07 bis 15:51 8:15 bis 15:53 08:17 bis 16:01
Bern 8:06 bis 16:40 8:13 bis 16:42 8:16 bis 16:50

Schnee und Klimawandel in den Alpen

Schneefall

In den vergangenen Tagen gab es besonders im Südwesten Österreichs teils extreme Schneemengen, in Obertilliach wurden am Mittwoch bis zu 180 cm Schnee gemessen – ein neuer Rekord für den Monat Dezember. In manchen Orten wie etwa Döllach gab es innerhalb weniger Tage sogar die 8-fache Niederschlagsmenge, die normalerweise im gesamten Dezember zusammenkommt.

Für Dezember wurden etwa in Obertilliach oder auch am Zettersfeld neue Maßstäbe gesetzt. Daten: Land Tirol
Im Südwesten gab es teils schon mehr als 600% vom üblichen Dezemberniederschlag.

Auch sonst gab es im Bergland und teils auch im Flachland etwas Schnee. In manchen Medien wurde von „einem Winter wie damals“ berichtet und in sozialen Medien tauchte oft der Satz „es ist ja Dezember“ auf, um darauf hinzudeuten, dass alles normal sei. Doch wie beeinflusst der Klimawandel tatsächlich den Schnee in Österreich?

Klimawandel und Schnee

Der Temperaturanstieg im Zuge des Klimawandels erfolgt in den Alpen schneller als im globalen Durchschnitt, auf dem Sonnblick sind die Temperaturen etwa im letzten Jahrhundert um mehr als 1,5 Grad gestiegen. Dies wirkt sich auf die Schneefallgrenze aus, so hat die Anzahl an Tagen mit einer Schneedecke besonders in tiefen Lagen schon deutlich abgenommen. Die winterliche Nullgradgrenze ist in den letzten 50 Jahren im Mittel um etwa 250 m angestiegen. Dieser Trend wird sich fortsetzen, so wird die Nullgradgrenze wohl noch vor 2050 im Winter durchschnittlich über einer Seehöhe von 1000 m liegen. Dadurch nimmt die Länge des Winters ab, gemessen an der Anzahl von Tagen mit einer Schneedecke: Der Schnee kommt später und schmilzt früher. Etwa in Arosa in der Schweiz hat sich die Periode mit einer Schneedecke von mindestens 40 cm bereits von fünfeinhalb Monaten auf etwas mehr als drei Monate verkürzt. Studien aus der Schweiz zeigen, dass derzeit Lagen unterhalb von 1300 m davon besonders stark betroffen sind, zudem werden auch die Zeitfenster für künstliche Beschneiung in diesen Höhenlagen immer kürzer. In Lagen oberhalb von etwa 2000 m gibt es dagegen keinen klaren Trend, da es hier auch bei einem mittleren Temperaturanstieg von 2 Grad immer noch kalt genug für Schneefall ist.

Klimawandel in Arosa
Mittlerer Verlauf der Schneehöhe in Arosa. Mehr Details dazu gibt es hier: Meteoschweiz

Besonders markant fällt die Abnahme an Tagen mit Schneedecke im Flachland auf: Immer häufiger ist es hier es eine Spur zu mild für Schneefall und wenn er mal liegen bleibt, ist er nach wenigen Tagen wieder weg. Der Wind lässt hier meist auch keine Niederschlagsabkühlung zu, wie es etwa in Osttirol oft der Fall ist. Eine internationale Studie hat neulich ergeben, dass die Zahl der Tage mit einer Schneedecke etwa in Wien oder München in weniger als 100 Jahren um etwa 30 Prozent abgenommen hat, und der Trend geht weiter bergab.

Anzahlt der Tage mit Schnee in München. © DWD

Extremereignisse

Markante Südstaulagen mit Italientiefs hat es schon immer gegeben, allerdings fällt die Häufung an Extremereignissen mit neuen Niederschlagsrekorden in den vergangenen Jahren deutlich auf, wie etwa im Jänner 2019 an der Alpennordseite oder im November 2019 und neuerlich im Dezember 2020 in den Südalpen. Die ehemaligen Ausnahmeereignisse werden langsam aber sicher zur Gewohnheit, ebenso wie es mit der Hitze im Sommer der Fall ist. Wie man bereits im vergangenen Winter gesehen kann, ist es allerdings auch möglich, dass im gesamten Rest des Winters nahezu kein Schnee mehr fällt.


Im Bild: Schneemassen im Raum Obertilliach.

Mehr Feuchtigkeit

Allgemein kann milde Luft mehr Feuchtigkeit aufnehmen als kalte Luft, zudem sorgen die steigenden Wassertemperaturen rund um Mitteleuropa (Nordsee, Mittelmeer) bei Kaltluftvorstoßen für eine labile Schichtung der Luft, so gab es auch in den vergangenen Tagen von der Adria teils bis zu den Lienzer Dolomiten Gewitter. Besonders bei blockierten Wetterlagen kann es also vor allem von mittleren Höhenlagen aufwärts ergiebig schneien, zudem kann die Schneefallgrenze durch die Niederschlagsabkühlung auch im Einflussbereich relativ milder Luftmassen bis in windgeschützte Täler absinken. Sehr effektiv funktioniert dies dankt der Topographie in Osttirol und Oberkärnten, da hier einerseits die Adria als Feuchtequelle in ummittelbarer Nähe liegt und anderseits die Berge im Süden hoch genug sind, um die milde Luft in tiefen Lagen fern zu halten. Die Luftmasse ist bei solchen Ereignissen tatsächlich nicht besonders kühl: Vom Talboden bis über 1500 m hinauf liegt sie meist nahezu exakt bei 0 Grad.

Blockierte Wetterlagen

Aktuelle Studien deuten darauf hin, dass blockierte Wetterlagen – anders als in den vergangenen Jahren oft angenommen – im Winter nicht zunehmen. Allerdings verstärkt der Klimawandel tendenziell die Auswirkungen einer blockierten Wetterlage, wenn sie mal auftritt: Im Sommer wird etwa ein umfangreiches Hoch rasch zur Hitzewelle, im Winter sorgt dagegen ein blockiertes Tief in manchen Regionen aufgrund der zunehmenden absoluten Luftfeuchtigkeit immer häufiger für extreme Niederschlagsmengen. Da solche Lagen allerdings meist nur unregelmäßig alle paar Jahre auftreten, ist von einer hohen Variabilität auszugehen, weshalb der Trend in tiefen Lagen langsam, aber sicher im Mittel nach unten geht.

Nach weniger als 10 Tagen steht fest, dass der Winter im Südwesten viel zu nass ausfallen wird.

Titelbild © AdobeStock

Italientief: Im Süden und Südosten Schnee bis in tiefe Lagen

Italientief bringt kräftigen Schneefall im Süden

Mit dem Vorstoß von kalter Luft in den Mittelmeerraum bildet sich über dem Golf von Genau in der Nacht auf Mittwoch ein Tief. In der Nacht auf Donnerstag setzt von Süden her kräftiger Schneefall ein. Der Schwerpunkt liegt in Ober- und Unterkärnten. Im Raum Klagenfurt kommen etwa 10 bis 15 cm Schnee zusammen, in Richtung Karnische Alpen und Karawanken sind lokal auch 25 bis 30 cm zu erwarten.

Donnerstag Schneefall im Südosten, weniger im Osten

Im Laufe des Donnerstags verlagert sich der Schneefall dann in den Südosten und Osten des Landes. Auch hier fällt der Schnee bis in tiefe Lagen und so ist von Graz über das Mürztal und dem Wechsel/Semmering mit 5 bis 10 cm Schnee zu rechnen.

Richtung Burgenland und Wiener Becken bzw. Wien sind die Niederschlagsmengen sehr gering, hier bildet sich höchstens eine dünne Schneedecke. Besonders vom Südburgenland über den Seewinkel bis ins Weinviertel kann es dagegen durch die mildere Luft in der Höhe zu gefrierendem Regen kommen! Dies zeigt sich auch in der scharfen Grenze zwischen der Oststeiermark und dem Südburgenland.

Markanter Südstau am Wochenende

Am Wochenende befindet sich der Alpenraum dann am Rande eines ausgeprägten Tiefs über Frankreich ab.  In den Alpen stellt sich eine kräftige Südströmung ein. An der Alpennordseite hat dies stürmischen Südföhn zu bedeuten, im Süden und Südwesten kräftigen Niederschlag. Von Freitagnachmittag bis Sonntagabend sind in Osttirol und Oberkärnten  150-200 mm Niederschlag zu erwarten, punktuell gibt es auch bis zu 250 mm. Somit sind auf den Bergen über 2 Meter Neuschnee zu erwarten, inklusive stark ansteigender Lawinengefahr.

Titelbild: stock.adobe.com

Der Taupunkt und der Tau

Morgentau auf eine Wiese

Als Tau bezeichnet  man einen beschlagenden Niederschlag aus flüssigem Wasser. Er entsteht durch Kondensation von in der Atmosphäre unsichtbar enthaltenem Wasserdampf an unterkühlten Oberflächen. Förderlich für dieses Phänomen sind folgende Faktoren:

  • Lange Nächte im Spätsommer und Herbst
  • Windschwache Verhältnisse
  • Wolkenloser Himmel

Die Luft kann je nach Temperatur nur eine bestimmte Menge an Wasserdampf aufnehmen. Dabei gilt: Je höher die Temperatur, desto mehr Wasserdampf kann sie fassen. Kommt etwas wärmere und feuchte Luft jedoch in Kontakt mit kühleren Oberflächen wie etwa Grashalme oder Autos, kühlt sie sich ab und kann den gespeicherten Wasserdampf nicht mehr halten. Dieser fällt aus und lagert sich dann in Form von Tautropfen ab. Passiert das ganze bei Temperaturen unter dem Gefrierpunkt, entsteht übrigens weißlicher Reif.

Der Taupunkt

Der Tau hat in der Meteorologie sogar zur Namensgebung einer physikalischen Größe beigetragen: Unter der „Taupunkttemperatur“ versteht man nämlich jene Temperatur, auf die sich die Luft abkühlen müsste, um vollständig mit Wasserdampf gesättigt zu sein. Ab dieser Temperatur beträgt die relative Feuchte der Luft bereits 100 %. Kühlt sich die Luft nur um wenige Zehntel weiter ab, beginnt Wasser an Oberflächen oder Kondensationskernen in der Umgebung zu kondensieren und es entsteht Nebel bzw. Tau.

Abschätzung der Tiefsttemperatur

Da beim Phasenübergang vom gasförmigen Wasserdampf zu flüssigem Wasser Wärme freigesetzt wird, wird die nächtliche Abkühlung bei einsetzender Taubildung gebremst oder sogar gestoppt. Daher gibt es in der Wettervorhersage auch eine Faustregel, welche die Taupunktstemperatur am Nachmittag als grobe Abschätzung für die nächtlichen Tiefstwerte heranzieht. Dies funktioniert natürlich nur dann, wenn die Luftmasse über einem Ort in den Stunden zwischen Nachmittag und dem folgenden Morgen nicht durch eine Wetterfront ausgetauscht wird. Auch bei bewölktem Himmel oder Wind ist diese Abschätzung nicht möglich, beides führt zu milderen Nächten.

Advektionstau

Der Morgentau, der nach ruhigen und windschwachen Nächten entsteht nennt man Strahlungstau. Es gibt aber noch einen weiteren Prozess, der zu Tau führen kann: Wenn nach einer kühlen Wetterphase plötzlich warme, feuchte Luft zugeführt wird, deren Taupunkt oberhalb der Bodentemperatur liegt, kommt es zur Kondensation des Wasserdampfes. Dieses Phänomen kann auch sämtliche Straßen nass machen und man nennt es Advektionstau.


Titelbild: Robert Körner on VisualHunt / CC BY-NC-SA

Optische Phänomene im Nebel

Nebel und Sonne

Bei Wanderungen durch eine Nebelschicht ist es empfehlenswert, an der Nebelobergrenze auf optische Effekte zu achten. Um diese zu beobachten muss man meist wie bei einem Regenbogen mit dem Rücken zur Sonne stehen. Anbei eine Übersicht der häufigsten optischen Phänomene im Nebel:

  • Glorie
  • Brockengespenst
  • Nebelbogen
  • Schattenstrahlen
Flugzeug über den Wolken
Auch aus dem Flugzeug lassen sich viele optische Phänomene beobachten. © AdobeStock

Glorie

Es handelt sich dabei um farbige Lichtbögen bzw. -kreise um den eigenen Schatten, welche wie der Regenbogen durch die Rückstreuung der Sonnenstrahlung und ihrer anschließenden Beugung an kleinen Wassertröpfchen entstehen. Man kann diese optische Erscheinung vor allem am Nebelrand beobachten, wenn man mit dem Rücken zur Sonne steht und die Sonnenstrahlen von hinten auf die Wolken fallen. Das gleiche Phänomen kann man oft aber auch aus einem Flugzeug, beobachten, wenn man Wolken nach oben durchbricht. Eine ähnliche Lichterscheinung ist der sog. Heiligenschein, dessen Ursache Tautropfen etwa auf einer Wiese sind.

Glorie
Ein Glorie an der Wolkenoberseite. © AdobeStock

Brockengespenst

Die Glorie geht oft einher mit dem sogenannten Brockengespenst. Es handelt sich dabei um den Schatten des Beobachters, der in eine tiefer gelegene Nebelschicht projiziert wird. Im Gegensatz zum Schattenwurf auf festen Oberflächen erscheint der Schatten in die Tiefe projiziert und dadurch perspektivisch vergrößert. Insbesondere wenn man sich nahe an der Nebelschicht befindet, kann es dazu kommen, dass man sich über die Größe und die Bewegungen des eigenen Schattens erschrickt. Das Phänomen wurde erstmals auf dem Brocken von Johann Esaias Silberschlag im Jahre 1780 beobachtet und beschrieben.

Brockengespenst
Ein Brockengespenst inkl. Glorie. © AdobeStock

Nebelbogen

Bei einem Nebelbogen handelt es sich um einen kreisförmigen, weiß leuchtenden Bogen, der ganz ähnlich zu einem Regenbogen entsteht. Er wird daher manchmal auch „weißer Regenbogen“ genannt. Neben der Brechung und Reflexion des Lichtes spielen dabei auch Beugungseffekte eine Rolle. Auch dieses Phänomen kann man beobachten, wenn man sich am Nebelrand mit dem Rücken zur Sonne befindet. Der Nebelbogen ist breiter als ein Regenbogen und schimmert außen gelblich und am Innenrand bläulich, dazwischen ist er weiß. Je kleiner die Tröpfchen sind, desto lichtschwächer erscheint er. Ab etwa 5 Mikrometern Tröpfchengröße wird das Licht so schwach, dass man es nicht mehr wahrnehmen kann.

Nebelbogen
Ein Nebelbogen. © AdobeStock

Schattenstrahlen

Im Gegensatz zu den bisher beschrieben Phänomenen sieht man Schattenstrahlen, wenn man in Richtung Sonne blickt. Diese optische Erscheinung trägt viele Namen wie etwa Strahlenbüschel oder auch Nebelstrahlen (engl. allg. „crepuscular rays„). Meist kann man diese Strahlen beobachten, wenn man sich im Schatten von Bäumen befindet und in Richtung Sonne blickt. An den von der Sonne beschienen Bereichen wird das Licht an den kleinen Nebeltröpfchen gestreut und es entsteht ein scheinwerferähnlicher Effekt, als ob man die Sonnenstrahlen tatsächlich sehen könnte.

Schattenstrahlen im Nebel
Nebelstrahlen. © AdobeStock

 

November: Ist dieser Monat wirklich so grau?

Im November gibt es viel Nebel und Hochnebel

Der November stellt den dritten und damit letzten Herbstmonat dar. Die durchschnittliche tägliche Sonnenscheindauer geht bis Monatsende  spürbar zurück: Von etwas über drei Stunden zu Monatsbeginn auf nur noch eineinhalb Stunden im Mittel am Monatsende. In typischen Nebelregionen wie etwa der Donauraum, das Schweizer Mittelland oder der Bodensee scheint die Sonne noch seltener, mehr Sonnenstunden gibt es dagegen auf den Bergen. Wie ein Blick auf die folgende Tabelle zeigt, ist der November allerdings nicht der trübste Monat des Jahres.

Mittlere Sonnenscheindauer (h) November Dezember Januar
Wien (A) 66 51 70
Innsbruck (A) 101 83 100
Graz (A) 75 56 76
Berlin (D) 55 41 51
Hamburg (D) 49 32 45
Köln (D) 54 40 50
Konstanz (D) 53 41 49
Zürich (CH) 50 35 48
Basel (CH) 68 52 67

Ein paar allgemeine Infos zum Thema Inversionswetterlage gibt es hier.

Stimmungstief

Obwohl der Dezember und gebietsweise auch der Januar grauer sind, wird besonders der November mit gedrückter Stimmung verbunden. Dies liegt vor allem an der raschen Veränderung der Lichtverhältnisse im Herbst, zudem wird es nach der jährlichen Zeitumstellung sehr früh dunkel. Mit den dunklen Tagen kommt es bei einem kleinen Teil der Mitmenschen zum sogenannten „Novemberblues“, einem Seelentief. Studien zeigen, dass in Mitteleuropa etwa zehn Prozent der Bevölkerung im Winter unter Symptomen wie Müdigkeit, Energielosigkeit oder Konzentrationsschwäche leiden.

Die besten Tipps

Gegen den Novemberblues hilft in vielen Fällen der Aufenthalt im Freien, selbst an einem trüben Novembertag ist es draußen in der Regel deutlich heller als in den Innenräumen. Das Licht wirkt dem Stimmungstief entgegen. Zusätzlich zu empfehlen sind sportliche Betätigungen im Freien: Die kühle Luft kurbelt das Immunsystem an und stärkt somit die körpereigenen Abwehrkräfte. Manche Menschen schaffen sich auch mittels kurzer Aufenthalte im Solarium Abhilfe, wesentlich empfehlenswerter sind allerdings Ausflüge in die Berge, wo man oberhalb des Nebels ebenfalls Vitamin D tanken kann.

Die nebeligsten Orte weltweit

Die vermutlich nebeligste Region der Welt ist die Neufundlandbank (Grand Banks) südöstlich von Neufundland, wo durch das Aufeinandertreffen von Labrador- und Golfstrom an mehr als 120 Tagen pro Jahr Sichtweiten von weniger als einem Kilometer herrschen. Auch manche Berge stecken allerdings oft in den Wolken, so soll der schottische Berg Ben Nevis sogar an 300 Tagen pro Jahr in Nebel gehüllt sei.

Nieselregen: Wenn es trotz Hochdruckeinfluss nass wird

Die Donauschlinge in Schlögen (OÖ) an einem nebligen Herbsttag - https://donauschlinge.panomax.com/

Vor allem in den Niederungen des Ostens ist es heute trotz Hochdruckeinfluss oft nass. Viele Wetterstationen vom Weinviertiel bis ins Nordburgenland melden sogar messbaren Niederschlag. Im Nordosten Wiens ist seit Mitternacht mittlerweile schon fast 1 l/m² gefallen.

Akkumulierte Niederschlagsmengen bis 8 Uhr MEZ am 10.11.2020 - UBIMET, ZAMG
Akkumulierte Niederschlagsmengen bis 8 Uhr MEZ am 10.11.2020 – UBIMET, ZAMG

Kräftiges Hoch und Niederschlag: Wie geht das? Schuld daran ist die mächtige Hochnebeldecke, die derzeit weite Teile Mittel- und Osteuropas fest im Griff hat. Durch äußerst stabile Wetterlagen und den im Herbst sehr niedrigen Sonnenstand bilden sich in den Niederungen oft sogenannte Kaltluftseen. Dadurch sind die Temperaturen in den Tal- und Beckenlagen niedriger als auf den Bergen (= „Inversionswetterlage“). Hält die Inversionswetterlage mehrere Tage an, so wird die Inversion und die damit verbundene Nebel- und Hochnebeldecke von Tag zu Tag dicker.

Satellitenbild um 10 Uhr MEZ am 10.11.2020 - EUMETSAT, UBIMET
Satellitenbild um 10 Uhr MEZ am 10.11.2020 – EUMETSAT, UBIMET
Luftschichtung bei einer Inversionswetterlage. © UBIMET

Wenn die – meist schwache – Strömung innerhalb der Inversion auf eine Berg- oder Hügelkette trifft oder ein schwaches Tiefdrucksystem in höheren Schichten oberhalb der Inversion durchzieht, so wird der Hochnebel weiter angehoben. Diese zusätzliche, leichte Hebung reicht in den meisten Fällen um weitere Kondensationsprozesse in der Nebelschicht zu erzeugen. Dies führt in der Folge zur Bildung von sehr kleinen Regentröpfchen, die dann als Nieselregen zu Boden fallen.

Morgen noch eine Spur nasser

Am morgigen Mittwoch ist in den Niederungen weiterhin verbreitet mit Hochnebel zu rechnen und noch dazu: Die beiden oben genannten Prozesse werden vorhanden sein. Einerseits nimmt die schwache Südostströmung in der Inversion vor allem im Osten und Südosten zu. Anderseits zieht ein sehr schwacher Höhentrog aus Westen auf. Durch die damit erzeugte, leichte Hebung ist morgen vielerorts Nieselregen einzuplanen.

Vorhergesagte Niederschlagsmengen für morgen 11.11.2020 - UBIMET
Vorhergesagte Niederschlagsmengen für morgen 11.11.2020 – UBIMET

 

Titelbild: Die Donauschlinge in Schlögen (OÖ) an einem nebligen Herbsttag – https://donauschlinge.panomax.com/

Maximale Fernsicht in den Alpen

Fernsicht

Hoch RAMESH sorgt derzeit für sehr trockene Luft auf den Bergen, somit kann man hier eine ausgezeichnete Fernsicht genießen. Von exponierten Bergen kann man dann nicht selten über 150 km entfernte Gipfel erblicken, manchmal auch über 200 km. Bei perfekten Bedingungen ist es etwa möglich von der Villacher Alpe aus die Wildspitze in den Ötztaler Alpen zu erspähen oder auch vom Bayerischen Wald aus den Großglockner (etwa 215 km).

Auf der Zugspitze gibt es heute eine gute Fernsicht. © www.foto-webcam.eu

Erdkrümmung

Die maximal mögliche Fernsicht hängt in erster Linie von der Erdkrümmung ab, so entfernt sich der sichtbare Horizont mit zunehmender Beobachtungshöhe. Beispielsweise liegt der Horizont für einen stehenden Menschen am Strand in einer Entfernung von etwa 5 Kilometern, während er von einer hundert Meter hohen Klippe schon 39 Kilometer entfernt liegt. Von einem Flugzeug in 10 Kilometern Höhe sind es dann sogar 360 Kilometer.

Atmosphärische Refraktion

Neben der Erdkrümmung spielt auch die unterschiedliche Dichte der Luft in Abhängigkeit von der Höhe eine Rolle. Dies führt nämlich zu einer Änderung des Brechungsindexes der Luft entlang des Strahlverlaufs und bewirkt eine bogenförmige Krümmung des Strahls. Dadurch können entfernte Gegenstände höher erscheinen, als sie tatsächlich sind, weshalb die horizontale Sichtweite etwas erhöht werden kann. Ein Spezialfall davon ist die astronomische Refraktion, die dazu führt, dass der obere Rand der Sonne sichtbar wird, obwohl er sich tatsächlich noch knapp unterhalb des Horizonts befindet. Bei wolkenlosem Himmel ist die Sonne also schon ein paar Minuten vor dem tatsächlichen Sonnenaufgang zu sehen.

Ein Beobachter auf der Erde sieht die Sonne dank der Lichtbrechung schon vor ihrem Aufgang.

300 km und mehr

Innerhalb der Alpen kann man bei perfekten Bedingungen an manchen Standorten sogar 300 km weit sehen, sofern keine anderen Berge im Weg sind. Beispielsweise kann man von den Ligurischen Alpen über die Po-Ebene hinweg bis zu den Südalpen in Italien blicken: Auf manchen Bildern etwa von der Cima Durand sieht man sogar den 304 km entfernten Monte Adamello. Im Extremfall kann man bei perfektem Kontrast kurzzeitig sogar über 400 km weit sehen, wie auf dem folgenden Bild vom Pic de Finestrelles (2826 m) in den Pyrenäen östlich von Andorra mit Blick bis zu den französischen Alpen.



Die beste Fernsicht gibt es meist zur Dämmerung bei herbstlichen oder winterlichen Inversionswetterlagen. Dazu sind exponierte, hohe Berge am Rande eines Gebirges besonders geeignet, wenn man von dort aus über eine Ebene hinweg zu einem anderen Gebirge blicken kann. Ein paar Bilder vom Schneeberg aus 270 km Entfernung gibt es hier.


Quelle Titelbild: www.foto-webcam.eu

Hoch bringt Nebelmeer und Sonnenschein

Hochnebel im Herbst

Österreich liegt derzeit unter Hochdruckeinfluss und besonders in den Bergen kann man nahezu ungetrübten Sonnenschein genießen. Während es normalerweise mit zunehmender Höhe immer kälter wird, sammelt sich bei einer herbstlichen Hochdrucklage die vergleichsweise schwere Kaltluft aber in den Tälern und Niederungen, sodass sich die übliche Temperaturschichtung in einem bestimmten Niveau umkehrt. Die höchsten Temperaturen werden knapp oberhalb dieses Niveaus erreicht, was etwa am Samstag in sonnigen Lagen um etwa 900 m Höhe der Fall ist. Dank der Subsidenz der Luft im Kern des Hochdruckgebiets kann man zudem eine ausgezeichnete Fernsicht genießen.

Hochnebel
V.a. knapp oberhalb der Inversion wird es sehr mild für die Jahreszeit. © www.foto-webcam.eu

Kaltluftproduktion

Aufgrund der von der Erde emittierten, langwelligen Strahlung kühlt sich der Boden und damit auch die Luft in den unteren Luftschichten wesentlich schneller ab, als die Luftmassen in der Höhe. Bevorzugt in Tal- und Beckenlagen entstehen dabei sogenannte Kaltluftseen, die beim niedrigen Sonnenstand im Herbst und Winter auch tagsüber bestehen bleiben. Tatsächlich kühlt sich die bodennahe Luft bei beständigen Inversionswetterlagen im Winter sogar langsam weiter ab, die Kaltluft wird also an Ort und Stelle produziert. Dieser Prozess ist besonders effektiv, wenn am Boden Schnee liegt und der Hochnebel in den Nächten vorübergehend auflockert.

Prognose der Tiefstwerte am Samstag (zum Vergrößern auf die Karte klicken).

Nebelmeer

Bei einer ausgeprägten Inversionswetterlage ist der Übergang von Warm- zu Kaltluft meist sehr scharf. An der Grenze der beiden unterschiedlichen Luftmassen bilden sich oft Wolken, in den Wetterberichten ist dann von Hochnebel die Rede. Aber auch ohne Wolkenschicht ist es unterhalb der Inversion häufig dunstig, denn durch die fehlende Durchmischung mit der oberen Atmosphäre sammeln sich Schadstoffe langsam an und die Sicht ist getrübt. Eine beständige Inversionswetterlage führt daher auch zu einer schlechten Luftqualität.

Hochnebel
Der Kaltluftsee im Pongau. © www.foto-webcam.eu

Ab Sonntag im Osten viel Nebel

Am Freitag gibt es den meisten Hochnebel aufgrund der nordöstlichen Strömung vor allem entlang der westlichen Nordalpen im Grenzbereich zu Bayern. Am Wochenende dreht die Strömung allerdings auf Südost: Nach einem verbreitet sonnigen Samstag verlagert sich somit der Nebelschwerpunkt ab Sonntag in den Osten Österreichs, besonders im Wald- und Weinviertel bleibt es dann oft ganztags trüb. Zu Wochenbeginn fällt im Osten und Südosten dann bei beständigem Hochnebel stellenweise auch ein wenig Nieselregen. Die Nebelobergrenze liegt am Wochenende bei 600 bis 800 m und steigt zu Wochenbeginn auf rund 1000 m an.

Barometer

In der Regel verbindet man tiefen Luftdruck mit schlechtem Wetter und hohen Luftdruck mit schönem Wetter. Besonders im Winterhalbjahr ist dies allerdings irreführend, da sich das Wetter in den Niederungen bei Hochdrucklagen oft grau in grau zeigt. Paradoxerweise gibt es im Winter meist sogar bei Tiefdruckeinfluss die besten Chancen auf Sonnenschein im Flachland, so kommt etwa im Osten Österreichs vor allem nach Durchzug von Kaltfronten bei lebhaftem Westwind häufig die Sonne zum Vorschein. Die Wetterangaben auf Barometern sind im Winter also oft nicht korrekt. Allgemein ist für Wetterprognosen nicht der absolute Luftdruck relevant, sondern vielmehr seine Änderung mit der Zeit. Beispielsweise kündigt schnell fallender Luftdruck meist Wind und Regen an.

Luftdruck
Hoher Luftdruck bringt im Herbst und Winter im Flachland wenig „Schön Wetter“. © AdobeStock

Titelbild © www.foto-webcam.eu

Inversionswetterlage mit Nebel und Hochnebel

Hochnebel im Land Salzburg

Zu dieser Jahreszeit stellt sich unter beständigem Hochdruckeinfluss immer öfter eine sogenannte Inversionswetterlage ein. Diese zeichnet sich durch eine Umkehr der normalerweise vorherrschenden Abnahme der Temperatur mit der Höhe aus, so ist es in mittleren Höhenlagen milder als in den Tal- und Beckenlagen. Dies hat zwei Ursachen:

  • Den Sonnenstand
  • Die Subsidenz bei Hochdrucklagen

Lange Nächte

Die Nächte in Mitteleuropa sind bereits über 14 Stunden lang und die Sonne steht tagsüber etwa in Wien maximal 27 Grad über dem Horizont. Die unteren Luftschichten kühlen in den langen Herbstnächten stark aus und besonders in den Tal- und Beckenlagen entstehen sogenannte Kaltluftseen, die durch die immer schwächere Sonne erst spät oder gar nicht mehr ausgeräumt werden können.

Im Herbst gibt es viel Nebel
Nebel im Rheintal. © www.foto-webcam.eu

Subsidenz

Kräftige Hochdruckgebiete im Herbst sorgen in der freien Atmosphäre für eine absinkende Bewegung der Luft („Subsidenz“). Wenn Luft absinkt, dann gelangt sie unter höheren Luftdruck und wird demzufolge komprimiert und erwärmt. Dies hat zur Folge, dass die Luft im Gebirge oft sehr trocken und die Fernsicht ausgezeichnet ist. Die Grenze zum darunterliegenden Kaltluftsee wird dann besonders markant und fördert beständigen Nebel oder Hochnebel.

In den Tallagen hält sich Nebel
Inversion mit Subsidenz. © UBIMET / www.foto-webcam.eu

Während in den Tälern und Niederungen also graues und kaltes Wetter herrscht, kann es in mittleren Höhenlagen tagsüber bei Sonnenschein mitunter auch mehr als 15 Grad milder sein! Aber auch ohne Hochnebel ist es unterhalb der Inversion häufig dunstig, denn durch die fehlende Durchmischung mit der oberen Atmosphäre sammeln sich Feuchte und Schadstoffe langsam an und die Sicht ist getrübt.

Eine Inversionswetterlage
Eine Dunstschicht im Zuge einer Inversionswetterlage in Osttirol. © www.foto-webcam.eu

Inverser Temperaturgang: Nachts wärmer als tagsüber

In der Wettervorhersage spielt beispielsweise nicht nur wie viel Niederschlag wo fallen wird oder wie der stark der Wind wehen wird eine Rolle, sondern sehr oft geht es auch um den Zeitpunkt. Besonders beim Schneefall ist dieser Faktor sehr wichtig. So macht es einen deutlichen Unterschied beim Bestimmen der Schneefallgrenze, ob der Niederschlag in der Früh oder am Abend fällt, so kann es im ersten Fall aufgrund der tiefen Temperaturen am Morgen schnell mal bis in die Täler schneien.

Auch gestern, mit Ankunft der Kaltfront aus Westen, spielte das Timing beim Temperaturgang eine interessante Rolle. Während die Kaltfront den Westen des Landes am Abend und in der Nacht zum heutigen Mittwoch erreichte, kam die kalte Luft in der Osthälfte des Landes erst heute Früh an.

So ergab sich etwa im Raum Wien ein sogenannter inverser Temperaturgang. Dies bedeutet, in der Nacht ist es wärmer als am Tag. Am aktuellen Beispiel führte die Kaltfront als zu einer stärkeren Abkühlung als die Erwärmung am Tag, die übrigens durch die dichte Wolkendecke auch sehr gehemmt war.

Der Vergleich der beiden folgenden Temperatur-Karten zeigt nun den Unterschied: Die erste Karte zeigt die Temperaturen am Dienstag um 23 Uhr und die zweite die heutigen Höchstwerte. Wenn es auch nur 0.2 Grad sind, so war es in der Nacht in Wien wärmer als heute tagsüber.

Auch die beiden Temperatur an den Wetterstationen in Wien sowie in Innsbruck zeigen verschiedene Verläufe. Im Westen ist der Tagesgang deutlich zu erkennen, in Wien wird es hingegen im Tagesverlauf kühler.

Innsbruck:

Wien:

Titelbild: foto-webcam.eu/webcam/bisamberg

Schweres Erdbeben und Tsunami in der Ägäis

Erdbeben - pixabay.com / Angelo_Giordano

Freitagmittag kam es in der Ägäis zu einem starken Erdbeben. Mit einer Stärke von etwa 7 auf der Richterskala war das Beben sogar bis Athen und Istanbul zu spüren. Ein Erdbeben dieser Stärke tritt global gesehen im Schnitt 18-mal pro Jahr auf. Besonders in Europa sind Beben von dieser Stärke eigentlich relativ selten, aber gerade in diesem Bereich befindet sich eine Verwerfung. Einige hundert Kilometer südliche des Epizentrums schiebt sich nämlich die afrikanische Platte unter die eurasische.

Im Zuge des Erdbebens kam es dann auch zu einem Tsunami der besonders die Insel Samos hart traf. So zog sich nach dem Erdbeben das Wasser an den Küsten zurück, dies ist ein unverkennbares Zeichen für einen bevorstehenden Tsunami.

Generell war die Region um die Insel Samos am stärksten von dem Erdbeben betroffen, so auch die Großstadt Izmir. Hier sind leider auch bereits einige Todesopfer zu beklagen, über 300 Menschen wurden verletzt.

Titelbild: Erdbeben – pixabay.com / Angelo_Giordano

Erdbeben erschüttert Türkei, Tsunami in der Ägäis

Freitagmittag kam es in der Ägäis zu einem starken Erdbeben. Mit einer Stärke von etwa 7 auf der Richterskala war das Beben sogar bis Athen und Istanbul zu spüren. Ein Erdbeben dieser Stärke tritt global gesehen im Schnitt 18-mal pro Jahr auf. Besonders in Europa sind Beben von dieser Stärke eigentlich relativ selten, aber gerade in diesem Bereich befindet sich eine Verwerfung. Einige hundert Kilometer südliche des Epizentrums schiebt sich nämlich die afrikanische Platte unter die eurasische.

Im Zuge des Erdbebens kam es dann auch zu einem Tsunami der besonders die Insel Samos hart traf. So zog sich nach dem Erdbeben das Wasser an den Küsten zurück, dies ist ein unverkennbares Zeichen für einen bevorstehenden Tsunami.

Generell war die Region um die Insel Samos am stärksten von dem Erdbeben betroffen, so auch die Großstadt Izmir. Hier sind leider auch bereits einige Todesopfer zu beklagen, über 300 Menschen wurden verletzt.

Quelle Titelbild: pixabay.com

Der goldene Oktober

Im Oktober sorgen Vegetation und Sonne für goldenes Licht

Der Ausdruck „goldener Oktober“ hat im deutschsprachigen Raum eine sehr lange Tradition. Er wurde nachweislich bereits vor mehreren hundert Jahren verwendet, wobei das exakte Datum des Aufkommens jedoch nicht gesichert ist. Entscheidend für den goldenen Eindruck in dieser Jahreszeit sind zwei Faktoren:

  • Die Laubfärbung
  • Der Sonnenstand
Herbst
Goldener Oktober bei Oberstdorf. © www.foto-webcam.eu/

Faktor Vegetation

Die Blattverfärbung der Laubwälder erreicht im Oktober vielerorts ihren Höhepunkt. Mit der abnehmenden Sonnenstrahlung lässt die Photosynthese nach: Um den dazu benötigten, wichtigen grünen Farbstoff Chlorophyll über den Winter nicht zu verlieren, wird dieser den Blättern entzogen und andere Farbstoffe werden sichtbar. Bei Lärchen und Birken etwa kommt es durch Karotin zu einer gelb bis goldgelben Färbung, bei Eiche und Ahorn hingegen sorgt der Stoffe Anthocyan für einen deutlich rote Farbe, während Buchen und Eichen aufgrund von Gerbstoffen eher ins Bräunliche gehen.

Herbst
Goldener Oktober in Kärnten. © www.foto-webcam.eu

Faktor Sonne

Die Färbung der Blätter wird durch die verstärkte Streuung des Sonnenlichts in dieser Jahreszeit zusätzlich hervorgehoben, insbesondere in den Morgenstunden sowie am späten Nachmittag bzw. Abend. Dadurch überwiegt die gelb-rötliche Strahlung, welche die Blattverfärbung noch besser und intensiver zur Geltung bringt, und oftmals geht der Farbton sogar ins Goldene. Ruhige Hochdrucklagen sowie auch Föhnlagen im Herbst garantieren meist diesen Sonnenschein, sofern der Nebel keinen Strich durch die Rechnung macht.

Goldenes Licht in Wien am Dienstagabend.
Goldenes Licht in Wien. © foto-webcam.eu

Der Indian Summer

Bunte Blätter ©unsplash.com - https://unsplash.com/photos/5IHz5WhosQE

Als Indian Summer bezeichnet man eine trockene und milde Wetterperiode im späten Herbst auf dem nordamerikanischen Kontinent. Durch die immer kälteren Nächte nehmen die Blätter der verschiedenen Birken- und Ahornarten während des „Indian Summer“ die unterschiedlichsten Schattierungen von Rot, Orange und Gelb an.


Zum Höhepunkt dieser Zeit kann man die rötliche Färbung der Wälder sogar vom Weltraum aus beobachten, wie man im folgenden Bild des Satelliten NOAA-20 aus einer Höhe von etwa 830 km sieht.

Der Winter naht

Der Begriff stammt aus dem Süden Kanadas und dem Nordosten der USA, wobei die genaue Wortherkunft ungeklärt ist. Eine Theorie besagt, dass die Indianer diese Zeit zur Jagd oder Ernte genutzt hätten. Der Indian Summer wird in der Regel durch ausgedehnte Hochdruckgebiete entlang der amerikanischen Ostküste ausgelöst. Vor allem im Landesinneren gibt es in dieser Zeit zwar schont die ersten Nachtfröste, für die Menschen dort ist es aber die letzte milde Zeit vor einem oft langen und kalten Winter. Vergleichbar ist dieses Phänomen mit dem Goldenen Oktober in Zentraleuropa.

Bunter Wald mit Straße in der Mitte, Vogelperspektive. ©unsplash.com - https://unsplash.com/photos/Qy-CBKUg_X8
Der Indian Summer ist unser Altweibersommer. ©unsplash.com

 

12.000 Liter Regen pro Jahr: der nasseste Ort der Welt

Überschwemmung

Nasse Tropen

Wo die nassesten Regionen der Erde liegen, lässt sich relativ einfach sagen. Generell sind die Tropen rund um den Äquator mit ihren warmen und extrem feuchten Luftmassen die mit Abstand regenreichsten Gebiete. Dies ist übrigens auch der Grund, warum dort der immergrüne Regenwald heimisch ist. Hier zur Illustration eine Karte mit den mittleren Jahresniederschlägen (siehe die dunkelgrünen Streifen von Kolumbien über Brasilien und Zentralafrika bis nach Indonesien):

Blick auf die Regenverteilung der Erde.
Blick auf die Regenverteilung der Erde.

Das Band mit den größten Jahresniederschlägen erstreckt sich

  • in Südamerika von Kolumbien über das Amazonasgebiet Brasiliens bis zum Atlantik
  • in Afrika von etwa Äquatorialguinea bis zum Kongo
  • in Südostasien von Indien bis Indonesien

Auch an den Westküsten Europas und Kanadas sowie in Neuseeland oder auch im Weststau der Anden kommen im Laufe eines Jahres ganz ordentliche Regen- bzw. zum Teil auch Schneemengen zusammen, so hohe Spitzen wie in den Tropen gibt es hier aber nicht.

Nass, nasser, Mawsynram

Den offiziellen Weltrekord für den größten Jahresniederschlag hält die Ortschaft Mawsynram im indischen Bundestaat Meghalaya. Dort sorgt der Monsun Jahr für Jahr im Sommerhalbjahr für schier unglaubliche Regenmengen. Feuchte Luft aus dem Golf von Bengalen strömt nordwärts, wird an den Khasi-Bergen (einem Ausläufer des Himalaya) gehoben und regnet sich aus. Hier regnet es durchschnittlich 11,87 m pro Jahr, also 11.870 Millimeter. Zum Vergleich: der durchschnittliche Jahresniederschlag beträgt in Berlin 570 mm, in Wien 550 mm und in Zürich 1.000 mm. Allerdings sind die Messungen in Indien nicht immer frei von Fehlern, weshalb auch andere Orte in der Welt Anspruch auf den Titel „Nassester Ort der Erde“ erheben.

Mount Waialeale – der nasse Berg

Die Vulkaninseln von Hawaii ragen weit aus dem Pazifik heraus, an ihren steilen Hängen stauen sich feuchte Luftmassen, die der Nordost-Passat zu den Inseln lenkt. Über einen Zeitraum von 32 Jahren wurden am Mount Waialeale auf Kauai durchschnittlich 11.684 mm Regen pro Jahr gemessen. Aufgrund der fehlerhaften Regenmessung in Indien sind die Hawaiianer der Überzeugung, sie beherbergen den nassesten Ort der Welt.

Titelbild: Adobe Stock

Medicanes: Tropische Stürme im Mittelmeer

Tropische Stürme im Mittelmeer

Der Mittelmeerraum ist vor allem im Winterhalbjahr eine regelrechte Brutstätte von Tiefdruckgebieten. Dies ist einerseits der Lage des Mittelmeers zwischen den mittleren Breiten und den Subtropen zu verdanken, andererseits auch der zahlreichen, angrenzenden Gebirgsketten, die den Prozess der Tiefdruckentwicklung begünstigen. In der Regel entstehen Tiefdruckgebiete über dem Mittelmeer im Zuge von Kaltluftvorstößen, welche von Tiefs der mittleren Breiten eingeleitet werden. Diese Tiefdruckgebiete weisen im Gegensatz zu tropischen Tiefs einen kalten Kern auf und haben eine unsymmetrische Struktur mit einer Warm- sowie Kaltfront.

Medicanes

Unter bestimmten Bedingungen können sich auch im Mittelmeerraum subtropische oder gar tropische Tiefdrucksysteme entwickeln. Obwohl sie die Stärke eines Hurrikans der Kategorie 1 nur in absoluten Ausnahmefällen erreichen, werden sie Medicanes (Mediterranean hurricane) genannt. Sie treten vor allem im Herbst auf und dann bevorzugt im Bereich der Balearen und über dem Ionischen Meer. In den meisten Fällen entstehen sie in Folge von Kaltlufteinbrüchen im Mittelmeerraum im Zusammenspiel mit zurückbleibenden Höhentiefs. Ähnlich wie bei tropischen Tiefdruckgebieten stellt die Kondensation des Wasserdampfs in den Gewitterwolken die treibende Kraft dar, welche von den Temperaturunterschieden zwischen der Meeresoberfläche und der Luft angetrieben wird.

Aktueller Fall

Die Reste des Höhentiefs, welches in der vergangene Woche für heftige Gewitter auf den Balearen sowie auf Sardinien gesorgt hat, befindet sich mittlerweile über dem südlichen Mittelmeer zwischen Sizilien und Libyen. Im Zusammenspiel mit einem kleinräumigen Tief und den überdurchschnittlich hohen Wassertemperaturen sorgt es derzeit für kräftige Gewitter.

Hochreichende Gewitterwolken (rosa Farbton) im Bereich des Tiefs am Dienstagmorgen..

Am Dienstag bleibt das Tief nahezu ortsfest, am Mittwoch wird es sich dann laut aktuellen Modellprognosen unter Verstärkung langsam in nördliche bis nordöstliche Richtung verlagern. Die Bedingungen für die Entwicklungen zu einem tropsichen Tief sind aufgrund der starken Windscherung nicht ideal, somit können sich die Gewitter wohl nicht symmetrisch um den Tiefkern anordnen, dennoch weist das Tief tropische Eigenschaften mit einem warmen Kern auf.

Extremlösung von ICON 0z mit Landgang als Hurrikan der Kategorie 1. © DWD

Am Donnerstagabend oder Donnerstagnacht dürfte das Tief laut aktuellen Modellberechnungen auf die Westküste Griechenlands treffen. Die Unsicherheiten sind allerdings noch groß: Laut dem aktuellen ECMWF-Modellauf wäre die Peloponnes betroffen, laut ICON würde dagegen ein voll entwickelter Medicane auf die Ionischen Inseln bei Kefalonia trefffen. Bei einem Landgang drohen jedenfalls schwere Sturmböen und gewittriger Starkregen.

Das Wasser im Mittelmeer ist derzeit überdurchschnittlich warm. © CEAM

 

Update:

Inzwischen sind schon erste Strukturen des Medicanes zu sehen.

Satellitenbild vom 16.9.2020 um 17.15 Uhr © Eumetsat

Titelbild: Medicane Qendresa im 2014 (© NASA/ EOSDIS)