Gewitter mit extremen Blitzraten

Unwetter mit Blitz

Für die Entstehung von Gewittern sind grundsätzlich drei Zutaten notwendig: Ausreichend hohe Luftfeuchtigkeit, eine labile Schichtung der Atmosphäre sowie ein Mechanismus, der die Luft zum Aufsteigen bringt. Letzteres kann beispielsweise ein Zusammenströmen der Luft in Bodennähe oder eine Front sein.

Hohe Blitzraten

Die Ladungstrennung innerhalb einer Gewitterwolke kommt durch Reibungsprozesse zwischen den enthaltenen Wassertröpfchen und Eispartikeln im Bereich der Auf- und Abwinde zustande. Eiskristalle laden sich dabei positiv auf, die Tropfen negativ. Dies führt im oberen Teil der Wolke zu einem Gebiet mit positiver Ladung, während an der Wolkenuntergrenze negative Ladung überwiegt. Wenn die Spannung zwischen den verschiedenen Ladungen sehr groß wird, kommt es zu einem Blitz. Dieser Spannungsausgleich erfolgt entweder innerhalb der Wolke oder zwischen dem Erdboden und dem unteren Teil der Wolke. Manchmal schlagen Blitze allerdings auch vom oberen Teil der Wolke am Boden ein. Für sehr viele Blitze benötigt man spezielle Bedingungen:

  • Starker Aufwind innerhalb der Gewitterwolke
  • Hochreichende Gewitterwolken, wobei besonders der Höhenunterschied zwischen der Nullgradgrenze und der Wolkenobergrenze relevant ist
  • Viele Aerosole bzw. Eiskeime

Die Blitzrate steht zwar häufig in Zusammenhang mit der Intensität eines Gewitters, allerdings ist dies nicht immer der Fall. So gibt es durchaus blitzreiche Gewitter mit relativ harmlosen Auswirkungen.

Unwetter in Spanien

Vergangene Woche war der Südosten Spaniens von heftigen Unwettern betroffen (siehe auch hier). Das Zusammenspiel aus Höhenkaltluft und milden Wassertemperaturen hatte dort für eine hochreichend labile Schichtung der Luft gesorgt. Auf den folgenden Videos sieht man eindrücklich, wie intensiv die Blitzrate bei diesen Gewittern war.


Hier geht es zum Blitzreport 2019 für Deutschland.

Titelbild © Adobe Stock

Der Altweibersommer

Herbstsonne

Wissenschaftlich gesehen versteht man unter dem Altweibersommer eine sogenannte meteorologische Singularität. Also einen Witterungsabschnitt mit beständigem Hochdruckwetter im Frühherbst, der nahezu jedes Jahr eintritt. Der Altweibersommer findet meist in der zweiten Septemberhälfte oder im Oktober statt.

20 Grad und kühle Nächte

In dieser Zeit steigen die Temperaturen an den Nachmittagen regelmäßig über 20 Grad. Die Nächte sind oft aber schon empfindlich kühl, manchmal sogar frostig und immer häufiger breiten sich in den Tälern und Becken Frühnebelfelder aus. Auf den Bergen gibt es dafür oft den ganzen Tag strahlend blauen Himmel und perfekte Fernsicht. Besonders im Oktober sind die Temperaturen an manchen Tagen im Mittelgebirge sogar höher als im Tal.

Glänzende Spinnfäden

Die Herkunft des Wortes ist nicht sicher, man vermutet aber, dass der Altweibersommer seinen Namen den Spinnen zu verdanken hat, welche im Herbst durch die Luft segeln: Die Fäden von jungen Baldachinspinnen glänzen im Sonnenschein und erinnern dabei an das graue Haar alter Frauen. Häufig läuft man unbeabsichtigt in solche Fäden hinein. Mit „weiben“ bezeichnete man im Althochdeutschen übrigens das Knüpfen von Spinnweben. Wenn sich im Oktober das Laub langsam verfärbt, ist dann häufig auch vom goldenen Oktober die Rede (in Nordamerika „Indian Summer„).

Spinnenflug

Das Fliegen stellt für Baldachinspinnen eine erfolgreiche Strategie zur Verbreitung dar. Dafür produzieren sie einen Flugfaden, welcher ab einer bestimmten Länge vom Wind erfasst wird und die Spinne zum Abheben bringt. Dieser Vorgang wird „Luftschiffen“ oder „Spinnenflug“ genannt. Beim Transport durch die Luft können Baldachinspinnen Höhen von mehreren Tausend Metern erreichen und bis zu mehrere Hundert Kilometer weit fliegen. Viele Spinnen überleben ihre Reisen allerdings nicht: Die meisten landen auf dem Wasser, in ungeeigneten Lebensräumen oder werden von Vögeln gefressen.


Titelbild © Adobe Stock

Herbst: Unwettersaison am Mittelmeer

Blitz am Meer

Die Gewittersaison in Mitteleuropa geht durchschnittlich von Mai bis August. In dieser Jahreszeit liefert die Sonne die nötige Energiemenge, um den Boden und somit auch die untersten Luftschichten derart zu erwärmen, dass die Luftschichtung labil wird. Im Spätsommer und Herbst verlagert sich der Schwerpunkt der Gewittertätigkeit immer weiter südwärts.

Zunehmender Tiefdruckeinfluss

Im Sommer liegt Südeuropa häufig unter dem Einfluss der subtropischen Hochdruckgebiete, welche sich von den Azoren und Nordafrika nordwärts ausbreiten. Dies sorgt für trockenes und heißes Sommerwetter. Im Herbst verlagert sich der Jetstream im Mittel langsam südwärts und die Ausläufer des subtropischen Hochdruckgürtels werden nach Nordafrika abgedrängt. Die Tiefdrucktätigkeit nimmt zu, so stellen Herbst und Winter im Mittelmeer auch die nasseste Zeit des Jahres dar.

In Barcelona ist der Oktober der nasseste Monat des Jahres.
In Barcelona ist der Oktober der nasseste Monat des Jahres.
Im Herbst fällt der meiste Niederschlag in Dubrovnik
In Dubrovnik fällt vor allem im November viel Regen.

Labile Schichtung der Luft

Der zunehmende Tiefdruckeinfluss im Herbst sorgt für die ersten markanten Kaltluftvorstoße bis in den Mittelmeerraum, was hier in Zusammenspiel mit den milden Wassertemperaturen zu einer labilen Schichtung der Luft führt. Im folgenden Bild sieht man die mittlere, potentiell verfügbare Energie für Konvektion bzw. vertikale Luftmassenbewegung (CAPE), welche ein wichtiges Maß für Gewitter darstellt: Während im Sommer das Mittelmeer eher stabilisierend wirkt und CAPE vor allem im Landesinneren wie etwa in Norditalien und Südosteuropa vorhanden ist, verlagert sich der Schwerpunkt im Herbst ins Mittelmeer und die angrenzenden Küstenregionen.

Im Herbst ist die Luftschichtung im Mittelmeer labil.
Mittlere, potentiell verfügbare Energie für Konvektion im Juni und September. © Tilev-Tanriöver

Unwettersaison

Der Spätsommer und Frühherbst stellen vor allem im nördlichen Mittelmeer die gewitteranfälligste Zeit des Jahres dar. Das zentrale Mittelmeer ist besonders im Laufe des Herbsts von Unwettern betroffen, während es im äußersten Süden und Osten meist erst im Winter der Fall ist. Dies spiegelt sich auch in den Ergebnissen einer Studie des ESWD wider, welche die Monate mit den meisten Tagen mit Tornados zeigt: In Mitteleuropa ist dies im Hochsommer der Fall, in Südeuropa dagegen im Herbst.

Im Mittelmeer gibt es im Herbst die meisten Tagen mit Tornados
Der Monat des Jahres mit den im Mittel meisten Tagen mit Tornados. © ESWD

Warmes Mittelmeer

Die Wassertemperaturen im Mittelmeer nehmen im Zuge der globalen Erwärmung langsam zu, so gab es auch im 2019 von Mitte Juni bis jetzt überdurchschnittliche Wassertemperaturen.

Mittlere Wassertemperatur im Vergleich zum Mittel. © CEAM
Mittlere Wassertemperatur im Vergleich zum Mittel. © CEAM

Auch im langjährigen Trend seit 1982 kann man eine Zunahme der mittleren Wassertemperaturen beobachten, was für die angrenzenden Länder eine steigende Gefahr darstellt. Die Unwettersaison wird nämlich tendenziell länger und intensiver, denn je wärmer das Wasser im Herbst ist, desto mehr Energie steht für Unwetter zur Verfügung. Besonders bei auflandigem Wind unter Tiefdruckeinfluss besteht dann die Gefahr von Sturzfluten und Hochwasser.

Klimastreifen für das Mittelmeer. © CEAM
Entwicklung der Wassertemperatur im Vergleich zum Mittel 1982-2011. © CEAM

Italien sehr exponiert

Italien ist für Starkregen besonders anfällig, da es einerseits nahe einer der wichtigsten Geburtsstätten für Tiefdruckgebiete im Golf von Genua liegt, andererseits weil es hier aufgrund der geographischen Form immer exponierte Gebiete mit auflandigem Wind gibt – unabhängig von der exakten Lage der Tiefs. Weiters sorgen die Alpen und die Apenninen stets für Staueffekte beim Niederschlag.

Unwetter in Spanien

In der vergangenen Woche hat ein Höhentief über dem südwestlichen Mittelmeerraum für schwere Unwetter gesorgt. Besonders betroffen waren die Provinzen Murcia und Valencia im Südosten Spaniens, siehe auch hier: Jahrhundertflut in Südostspanien. Auch im Jahr 2018 gab schwere Unwetter auf Mallorca und in Italien.

Titelbild © Adobe Stock

Der Taupunkt und der Tau

Morgentau auf eine Wiese

Als Tau bezeichnet  man einen beschlagenden Niederschlag aus flüssigem Wasser. Er entsteht durch Kondensation von in der Atmosphäre unsichtbar enthaltenem Wasserdampf an unterkühlten Oberflächen. Förderlich für dieses Phänomen sind folgende Faktoren:

  • Lange Nächte im Spätsommer und Herbst
  • Windschwache Verhältnisse
  • Wolkenloser Himmel

Die Luft kann je nach Temperatur nur eine bestimmte Menge an Wasserdampf aufnehmen. Dabei gilt: Je höher die Temperatur, desto mehr Wasserdampf kann sie fassen. Kommt etwas wärmere und feuchte Luft jedoch in Kontakt mit kühleren Oberflächen wie etwa Grashalme oder Autos, kühlt sie sich ab und kann den gespeicherten Wasserdampf nicht mehr halten. Dieser fällt aus und lagert sich dann in Form von Tautropfen ab. Passiert das ganze bei Temperaturen unter dem Gefrierpunkt, entsteht übrigens weißlicher Reif.

Der Taupunkt

Der Tau hat in der Meteorologie sogar zur Namensgebung einer physikalischen Größe beigetragen: Unter der „Taupunkttemperatur“ versteht man nämlich jene Temperatur, auf die sich die Luft abkühlen müsste, um vollständig mit Wasserdampf gesättigt zu sein. Ab dieser Temperatur beträgt die relative Feuchte der Luft bereits 100 %. Kühlt sich die Luft nur um wenige Zehntel weiter ab, beginnt Wasser an Oberflächen oder Kondensationskernen in der Umgebung zu kondensieren und es entsteht Nebel bzw. Tau.

Abschätzung der Tiefsttemperatur

Da beim Phasenübergang vom gasförmigen Wasserdampf zu flüssigem Wasser Wärme freigesetzt wird, wird die nächtliche Abkühlung bei einsetzender Taubildung gebremst oder sogar gestoppt. Daher gibt es in der Wettervorhersage auch eine Faustregel, welche die Taupunktstemperatur am Nachmittag als grobe Abschätzung für die nächtlichen Tiefstwerte heranzieht. Dies funktioniert natürlich nur dann, wenn die Luftmasse über einem Ort in den Stunden zwischen Nachmittag und dem folgenden Morgen nicht durch eine Wetterfront ausgetauscht wird. Auch bei bewölktem Himmel oder Wind ist diese Abschätzung nicht möglich, beides führt zu milderen Nächten.


Titelbild: Robert Körner on VisualHunt / CC BY-NC-SA

Wasserhosen im Herbst

Wasserhosen im Mittelmeer © shutterstock

Für die Entstehung von Wasserhosen braucht es eine große, warme Wasserfläche, welche in Zusammenspiel mit einer relativ kalten Luftmasse für eine labile Schichtung der bodennahen Luft sorgt. Weiters sind windschwache Verhältnisse oder allgemein Bereiche mit zusammenströmenden Winden günstig, welche für kleinräumige Verwirbelungen sorgen. An der Unterseite von Schauer- oder Gewitterwolken kann es dann zu Wasserhosen kommen, welche oftmals auch paarweise auftreten.

Kurzlebige Wirbel

Wasserhosen sind meist deutlich schwächer als Tornados und haben eine Lebensdauer von wenigen Sekunden bis hin zu über 10 Minuten. Sie legen höchstens wenige hundert Meter zurück und sind meist harmlos. Nur wenn Boote oder Schiffe ihnen zu nahe kommen oder die Wasserhose auf das Land zieht, kann es gefährlich werden. Vergleichsweise selten treten mesozyklonale Wasserhosen in Zusammenspiel mit Superzellengewittern auf, diese können deutlich höhere Windgeschwindigkeiten aufweisen!

Sichtungen

Im Zuge des Kaltlufteinbruchs über Mitteleuropa am vergangenen Wochenende kam es besonders im Mittelmeerraum zu mehreren Sichtungen von Wasserhosen, wie etwa in Barcelona, bei Elba in Italien und an der nördlichen Adria. Auch über größeren Seen kommt es aber manchmal zu Wasserhosen, so auch am vergangenen Sonntag am Starnberger See in Bayern.

Dorian: Vom Hurrikan zum Islandtief

Tropische Wirbelstürme im Atlantik entstehen auf den warmen Gewässern zwischen der Karibik und Afrika. Mit den dort vorherrschenden östlichen bis südöstlichen Winden verlagern sich die Stürme meist in Richtung Amerika, wie etwa im Fall von Hurrikan Dorian in der vergangenen Woche. Abhängig von der großräumigen Druckverteilung können die Stürme aber manchmal auch schon früher nordwärts abbiegen, wie es aktuell Hurrikan Gabrielle macht.

Die aktuelle Lage der Tiefs und deren weitere Zugbahn. © UBIMET / NCEP
Die aktuelle Lage der Tiefdruckgebiete. © UBIMET / NCEP

Vom Hurrikan zum Islandtief

Wenn Hurrikane in nördlichere Breite vorstoßen kommen sie allmählich in den Bereich der Westwindzone. In diesen Gebieten sorgt die zunehmende Windscherung für eine Umwandlung des Tiefs: Die Symmetrie geht verloren, das Tief entwickelt allmählich Fronten und bei etwas nachlassenden Windgeschwindigkeiten wird es größer. Vorerst besitzt das Tief noch einen warmen Kern, im weiteren Verlauf kühlt dieser aber ab und das Tief wird schließlich zu einem außertropischen Tiefdruckgebiet der mittleren Breiten. Diese sogenannte Extratropical Transition hat Dorian entlang der US-Ostküste durchgemacht, mittlerweile befindet sich Dorian als außertropisches Tief südöstlich von Grönland.

Entwicklung von Dorian. © Robert Hart, FSU; NCEP
Die Umwandlung des Tiefkerns von ex-Hurrikan Dorian. © FSU / NCEP

Am Dienstagabend bzw. in der Nacht zum Mittwoch zieht Dorian über den Süden Islands hinweg zur Norwegischen See, dabei kommt besonders auf den Färöer-Inseln und in Schottland stürmischer Westwind auf, in Summe sind die zu erwartenden Windgeschwindigkeiten aber keineswegs ungewöhnlich für die sturmerprobten Regionen am Rande des Nordatlantiks.

Gabrielle zerschellt an Irland

Der Ex-Hurrikan Gabrielle wird nach derzeitigem Stand unter Abschwächung am Donnerstag Irland erreichen. Bis auf etwas Regen und Wind sind aber keine markanten Wettererscheinungen mehr zu erwarten.

Die Zugbahn von Hurrikan Gabreille inkl. Prognose vom NHC. © NOAA
Die Zugbahn von Hurrikan Gabrielle inkl. Prognose vom NHC. © NOAA

Hurrikane in Europa

Knapp 50 % der tropischen Wirbelstürme im Atlantik wandeln sich in außertropische Tiefdruckgebiete um, manche davon beeinflussen in weiterer Folge auch das Wetter in Europa. Dass ein tropischer Sturm das europäische Festland trifft, ist hingegen äußerst selten, da sich die Stürme zuvor meist in hybride Stürme der mittleren Breiten mit einem warmen Kern und einem sich entwickelnden Frontensystem umwandeln. Dennoch können Tiefdruckgebiete mit überwiegend tropischen Eigenschaften im Kernbereich das europäische Festland erreichen: Der erste offizielle Fall war der Ex-Hurrikan Vince im Jahr 2005. Im Oktober 2017 kam Hurrikan Ophelia der Iberischen Halbinsel sehr nahe, er traf dann allerdings als Hybridsturm auf Irland. Im Oktober 2018 sorgte der Ex-Hurrikan Leslie für Orkanböen an der Westküste Portugals. Weiters können auch über dem Mittelmeer manchmal tropische Tiefdruckgebiete entstehen, aufgrund der geographischen Lage werden sie „Medicanes“ genannt.

Wetterbesserung am Wochenende

Die kommenden Tage gestalten sich besonders in der Nordhälfte Deutschlands leicht unbeständig, da am Mittwoch die okkludierte Front von Ex-Dorian den Nordwesten erfasst und  am Freitag die Reste von Ex-Gabrielle über den Norden hinwegziehen. Leicht wetterbegünstigt ist der Süden. In weiterer Folge etabliert sich über den Britischen Inseln aber ein Ableger des Azorenhochs namens Friederike, welches am Wochenende im ganzen Land für ruhige Wetterbedingungen sorgt. Besonders im Südwesten wird es zudem spätsommerlich warm.

Ex-Hurrikan Dorian nimmt Kurs auf Europa

Das Seegebiet zwischen der Karibik und Afrika ist eine der wichtigsten Brutstätten für tropische Stürme. Die Wassertemperatur beträgt dort im Sommer rund 27 Grad – damit ist eine wichtige Komponente für die Entstehung von tropischen Stürmen gegeben. Mit den östlichen Winden werden die Stürme nach Westen verlagert und entwickeln sich unter Umständen zu Hurrikanen. So auch der Hurrikan Dorian, der vergangene Woche die Inselgruppe der Bahamas und die Ostküste der USA getroffen hat (siehe auch diesen Blog-Eintrag). Nun ist der Ex-Hurrikan in weit abgeschwächter Form über Neufundland gezogen und nimmt weiter Kurs auf Nordeuropa. Die zu erwartenden Windgeschwindigkeiten sind weitaus geringer als über dem Westatlantik. Beachtlich ist dennoch die Lebensdauer und zurückgelegte Wegstrecke des Druckgebildes. Anfangs hatte der Zyklon seine Energie aus dem warmen Wasser der Außertropen bezogen, jetzt, in den mittleren Breiten, zapft er wieder kalte Luft aus dem Norden an. Damit geht auch eine neuerliche Frontenbildung einher. Ex-Dorian zieht allerdings Richtung Spitzbergen, somit wird Mitteleuropa nur am Rande von dessen Frontensystemen am Mittwoch gestreift.

Die Überbleibsel von Hurrikan Dorian ziehen nach Osten. Quelle: National Hurricane Center / NOAA

Ein weiterer Player auf dem derzeitigen Wetterspielfeld Atlantik ist der tropische Zyklon GABRIELLE. Nach derzeitigem Stand erreicht dieser am Donnerstag die Britischen Inseln, verliert aber auf seinem nordöstlichen Kurs an Kraft. Stürmischer Wind (Böen bis 100 km/h) und kräftiger Regen stehen dennoch vor allem für die Küstenregionen am Programm.

Der Tropische Zyklon GABRIELLE nimmt Kurs auf die Britischen Inseln. Quelle: National Hurricane Center / NOAA

 

Bodendruckverteilung am Donnerstag 11.9.2019, 00 Uhr UTC. Datenquelle: ECMWF

Hurrikane in Europa

Dass ein Hurrikan das europäische Festland trifft ist äußerst selten. Zuletzt erreichte der Hurrikan LESLIE im Oktober 2018 mit Windspitzen bis 160 km/h die Iberische Halbinsel (siehe Blogeintrag: Hurrikan Leslie).

Europa unter Hochdruckeinfluss

In West- und Mitteleuropa setzt sich im Laufe der Woche immer mehr ein Azorenhoch durch. Damit werden Tiefs vom Atlantik – so auch  der Zyklon Gabrielle – nach Nordosten abgedrängt. Für den Alpenraum zeichnen sich ein paar spätsommerliche Tage ab, die Temperaturen steigen wieder deutlich an, am Freitag sind bis zu 27 Grad möglich.

Septemberwetter

Fahrrad vor einem See im Spätsommer

Kalendarisch beginnt der Herbst heuer erst am 23. September, in der Meteorologie zählt man den September bereits komplett zur dritten Jahreszeit. Besonders in der ersten Hälfte des Monats sollte der Sommer aber keineswegs unterschätzt werden. Temperaturen an die 30 Grad bzw. sogar darüber kommen in manchen Jahren vor. Im September 2015 wurde in Österreich erstmals sogar die 35-Grad-Marke erreicht! Die Nächte werden aber tendenziell immer kühler und besonders im Bergland kommt es wieder häufiger zu Bodenfrost.

Abnehmende Tageslänge

Die Sonne steht im September immer tiefer, so büßt man beispielsweise in Wien durchschnittlich vier Minuten pro Tag an Tageslänge ein. Sind zu Beginn des Monats bei wolkenlosem Himmel noch 13,5 Stunden Sonnenschein möglich, stehen am Ende nur noch 11,5 Stunden zur Verfügung. Zudem ist die Intensität der Strahlung aufgrund des geringeren Sonnenstands herabgesetzt, im September kommt ungefähr die gleiche Globalstrahlung wie im März an. Dies führt unweigerlich zu einem Abwärtstrend der Temperatur.

Die Tage werden jetzt merklich kürzer.
Die Tageslänge nimmt ab Ende August um etwa 4 Minuten pro Tag ab.

Nebelfelder

Wegen der immer länger werdenden Nächte kann die Luft bodennah stärker auskühlen als noch in den Monaten davor. Somit bilden sich besonders in Gewässernähe und in Beckenlagen wieder vermehrt Nebelfelder. Liegen in höheren Schichten noch dazu deutlich wärmere Luftmassen, sind bereits Hochnebelfelder möglich. In der Regel reicht die Kraft der Sonne aber noch aus, um diese untertags aufzulösen. Da die Luft in tendenziell auch stabiler trockener wird, gibt es häufig eine gute Fernsicht auf den Bergen. Gewitter treten abseits der Küsten hingegen nur noch vereinzelt auf.

Sturm

Im September nehmen die Temperaturgegensätze zwischen den Subtropen und der Arktis zu und der Jetstream in den mittleren Breiten wird tendenziell wieder stärker. Mitunter schaffen es somit auch die ersten kräftigeren Tiefdruckgebiete bis nach Mitteleuropa, dabei sind insbesondere in Norddeutschland erste Herbststürme möglich, die an ihrer Rückseite kühle Luft bis nach Mitteleuropa führen können. In Zusammenspiel mit Italientiefs stehen damit auch erste Wintereinbrüche bis in höhere Tallagen der Alpen wieder auf dem Programm. Andererseits kommt es im Vorfeld solcher Kaltfronten wieder häufiger zu Föhn in den Alpen, daher können die Temperaturgegensätze in dieser Jahreszeit sehr groß ausfallen.#

Titelbild © Adobe Stock

Was Hurrikans, Zyklone und Taifune unterscheidet

Hurrikan DORIAN @NOAA

Als Hurrikan wird ein tropischer Wirbelsturm bezeichnet, der im einminütigen Mittel eine Windgeschwindigkeit von mindestens 118 km/h aufweist und im Bereich des Atlantiks und des Nordostpazifiks auftritt. Der Begriff Hurrikan leitet sich von Huracán ab, dem Maya-Gott des Windes, des Sturmes und des Feuers. In anderen Regionen der Erde ist der Hurrikan hingegen unter anderen Namen bekannt: So heißt das gleiche Phänomen in Ostasien und im Westpazifik Taifun, im Indischen und im Südpazifik Zyklon und in Australien und Indonesien Willy-Willy (inoffizielle Bezeichnung).

Entstehung und Auftreten

Tropische Wirbelstürme entstehen für gewöhnlich in der Passatwindzone über den Weltmeeren. Eine Grundvoraussetzung für deren Bildung ist eine warme Wasseroberflächentemperatur (besonders effektiv ab etwa 26 Grad), da dann große Wassermengen verdunsten, die dem thermodynamischen System bei seiner Entwicklung enorme Energiemengen bereitstellen. Entsprechend treten die meisten tropischen Wirbelstürme in den Sommer- und Herbstmonaten der jeweiligen Regionen auf.

Struktur und Auswirkungen

Mit einem Durchmesser von einigen hundert Kilometern und einer Lebensdauer von mehreren Tagen gehören tropische Wirbelstürme zu den größten und langlebigsten meteorologischen Erscheinungen. Sie sind gekennzeichnet durch großflächige organisierte Konvektion und weisen eine geschlossene zyklonale Bodenwindzirkulation auf. Darüber hinaus kommt es bei entsprechender Intensität zur Ausbildung eines wolkenarmen Auges im Zentrum des Sturms, wo der Luftdruck im Extremfall unter 900 hPa sinkt. Am Rande des Auges treten die höchsten Windgeschwindigkeiten von teils mehr als 300 km/h auf. Neben dem starken Wind sind vor allem sintflutartige Regenfälle sowie Sturmfluten die größte Gefahr.

Saffir-Simpson-Skala

Es gibt unterschiedliche Skalen für die Klassifizierung der  Windstärken von tropischen Wirbelstürmen. Im Atlantik erfolgt dies mittels der sogenannten Saffir-Simpson-Skala, die in fünf Kategorien unterteilt ist. Nicht verwechseln darf man allerdings einen Hurrikan bzw. Taifun mit einem Tornado! Dieser entsteht auf völlig unterschiedliche Art und Weise im Bereich von Superzellengewittern und weist somit entsprechend andere Eigenschaften auf. Allein seine horizontale Ausdehnung ist um etwa das Tausendfache geringer.

 

Pollensaison geht in die Schlussphase

Die Pollensaison geht in die Schlussphase

Die Pollensaison geht allmählich in die Schlussphase: Der Höhepunkt der Beifußblüte ist zwar bereits überstanden, dennoch muss besonders in den östlichen Landesteilen noch mit mäßigen Konzentrationen an Beifußpollen in der Luft gerechnet werden. Aktuell findet gebietsweise allerdings die Blütezeit von Ragweed statt, besonders betroffen davon sind:

  • Der Süden und Osten Österreichs
  • Der Donauraum
  • Ostdeutschland
  • Der Oberrheingraben

Weiters begünstigt das feuchtwarme Wetter die Verbreitung von Pilzsporen, welche in tiefen Lagen in teils hohen Konzentrationen auftreten.

Ragweed

Das beifußblättrige Traubenkraut, mittlerweile unter seinem englischen Namen Ragweed wesentlich bekannter, wurde Ende des 19. Jahrhunderts von Nordamerika nach Europa eingeschleppt und breitet sich seit den 1980er Jahren auch in Mitteleuropa aus. Bereits ab wenigen Pollenkörnern pro Kubikmeter Luft reagieren empfindliche Personen allergisch. Dieses Unkraut wächst an Straßenrändern, in Äckern oder auf Schuttplätzen, und ist verantwortlich für den „Herbstheuschnupfen“. Für Ragweedpollen spielt der Ferntransport eine wichtige Rolle: Besonders in der Pannonischen Tiefebene ist diese Pflanze stark ausgebreitet, somit treten besonders bei südöstlichem Wind gesteigerte Belastungen auf.

Erster Belastungsgipfel

Die Blüte von Ragweed hat in Südosteuropa sowie teils auch in Mitteleuropa bereits eingesetzt, somit gibt es gebietsweise schon starke Belastungen. In diesen Tagen findet der erste Belastungsgipfel der Saison statt. Die Überschneidung der Blühphasen von Beifuß und Ragweed kann die Beschwerden bei Allergikern durch Kreuzreaktionen zudem intensivieren. Erst zu Beginn der kommenden Woche ist mit Ankunft einer Kaltfront eine Entspannung in Sicht.

Saisonende im September

Die gute Nachricht zum Schluss: Im September neigt sich die Pollensaison dem Ende zu, nach dem Abklingen der Blüte von Ragweed sorgen lediglich Pilzsporen noch für allergische Beschwerden.

Title Photo: anro0002 on VisualHunt / CC BY-SA

Flash Floods und Vermurungen

Überschwemmung Hochwasser Gewitter

Unter einer Sturzflut (flash flood) versteht man eine plötzliche Überschwemmung. Dabei ist ganz allgemein gesprochen mehr Wasser vorhanden, als im Boden versickern oder von einem Fluss abgeleitet werden kann. Im Berg- und Hügelland bahnen sich dann große Wassermassen mit hoher Geschwindigkeit ihren Weg hangabwärts – oft in Zusammenspiel mit Vermurungen – und im Flachland kommt es zu Überflutungen.

Sturzfluten

Ursachen einer Sturzflut sind in erster Linie große Regenmengen innerhalb kürzester Zeit. Das geschieht speziell im Sommer bei nur langsam ziehenden Gewitterzellen, die sich dann an Ort und Stelle ausregnen. Kommt es nach einem solchen Gewitterguss innerhalb von maximal sechs Stunden zu einer verheerenden Überschwemmung, spricht man von einer Sturzflut.

Sturzfluten treten vor allem bei Gewittern auf, manchmal können aber auch plötzlich kollabierende Dämme an einem Fluss eine Sturzflut weiter stromabwärts auslösen. Weiters kann auch eine abrupt einsetzende Schneeschmelze in den Bergen mitunter zu einer Sturzflut führen.

Flash Floods in den USA

Besonders anfällig für eine Sturzflut sind trockene und tief gelegene Gebiete. Durch häufige Trockenheit ist der Boden nämlich meist stark versiegelt, dass praktisch das gesamte Regenwasser oberflächlich abläuft. Auf der Erde trifft diese gefährliche Kombination aus Trockenheit und schweren Gewittern im Sommer speziell im Südwesten der USA auf: Die Canyons in Arizona, Utah und Nevada sind berüchtigt für ihre zerstörerischen flash floods. Oft kreuzen Wanderwege sowie spärlich befahrene Straßen die ausgetrockneten Flussbetten, immer wieder werden hier Menschen von Sturzfluten überrascht. Dabei kann auch ein kilometerweit entferntes – und womöglich gar nicht sichtbares – Gewitter eine tückische Sturzflut auslösen.

Gefahren

Aufgrund ihrer Plötzlichkeit sind flash floods extrem gefährlich. Das Potential dafür kann man zwar schon Tage im Voraus erkennen, wo es aber tatsächlich zu einer Sturzflut kommt, zeigt sich oft erst während des Ereignisses: Nicht nur die Intensität eines Gewitters spielt nämlich eine Rolle, sondern auch dessen Verlagerungsrichtung und -geschwindigkeit über das Einzugsgebiet eines Flusses.

Das Auto bietet keinen Schutz, da schon eine 50 cm hohe Flutwelle locker ausreicht, um ganze Fahrzeuge samt Insassen wegzuspülen. Erschwerend kommt hinzu, dass eine Sturzflut oft nicht nur aus Wasser besteht: Die Flutwelle reißt größere Gegenstände wie Baumstämme und Steine mit – diese gefährden Menschen zusätzlich. Alleine in den USA sterben pro Jahr durchschnittlich mehr als 100 Menschen bei einer Sturzflut, also mehr als durch Blitzschlag, Tornados und Hurrikane! Auch in Europa kommt es jährlich zu Todesopfern, ganz besonders in den Herbstmonaten im Mittelmeerraum.


Der Polarjet im Sommer

Der Jetstream ist ein polarumlaufendes Starkwindband.

Entstehung des Polarjets

Der Polarjet bildet sich an der Grenze zwischen kühler Polarluft und deutlich wärmerer Luft der Subtropen und verläuft je nach Großwetterlage meist zwischen 40° und 60° geographischer Breite rund um die Nordhalbkugel. Die Position und teils auch die Ausrichtung des Jets können allerdings stark variieren. Das Maximum der Windgeschwindigkeiten wird zwischen 8 und 12 Kilometer Höhe erreicht und liegt häufig über der 250-km/h-Marke, über Japan wurden 1970 sogar bis zu 650 km/h gemessen. Das jahreszeitliche Maximum der Windgeschwindigkeit wird im Winter erreicht, wenn die Temperaturgegensätze zwischen Nord und Süd am größten sind. Der Polarjet ist eine Geburtsstätte für Tiefdruckgebiete und hat somit direkten Einfluss auf das Wetter.

Der Polarjet im Sommer

Im Winter verläuft die Grenze zwischen der kühlen Polarluft und den subtropischen Luftmassen generell südlicher als im Sommer, weshalb sich der Polarjet häufig im Mittelmeerraum befindet. Im Frühling verschiebt sich diese Grenze langsam nordwärts, wobei der bereits hohe Sonnenstand weiterhin für markante Temperaturkontraste über Europa sorgen kann. Diese Zeit des Jahres ist daher besonders anfällig für wechselhafte und phasenweise auch tiefdruckbestimmte Wetterbedingungen. Im Juli und August breiten sich die warmen Luftmassen dann meist auf weite Teile des Kontinents aus, weshalb der Polarjet in dieser Jahreszeit im Mittel sehr weit nördlich verläuft. Dies ermöglicht es den subtropischen Hochdruckgebieten, sich auf Zentraleuropa auszuweiten, was hier zu länger anhaltenden stabilen Wetterbedingungen führt.

Aktuell starker Jet in Europa

Derzeit ist der Jetstram über Mitteleuropa außergewöhnlich stark: Am Sonntag liegt der Kern des Jets über der Nordsee und erreicht dort in knapp 10 km Höhe Windgeschwindigkeiten über 120 Knoten (etwa 220 km/h). Auch über der Mitte Deutschlands ist der Höhenwind mit über 80 Knoten (etwa 150 km/h) allerdings stark ausgeprägt. In Zusammenspiel mit einer Kaltfront begünstigt dies in der Schweiz und in Südwestdeutschland zum Abend hin die Entstehung langlebiger und kräftiger Gewitter mit einer hohen Zuggeschwindigkeit.

Jetstream am Sonntagnachmittag
Wind (Jetstream) in knapp 10 km Höhe am Sonntagnachmittag. © NCEP / UBIMET

Von Windscherung spricht man, wenn die Windrichtung vertikal oder horizontal auf engem Raum, beziehungsweise die Windgeschwindigkeit in ihrem vertikalen Verlauf Unterschiede aufweist. Unter anderem ist die Windscherung für die Entstehung und Entwicklung von Gewittern von Bedeutung. Allgemein steht die Intensität einer Gewitterlage in Zusammenhang mit der Stärke der Scherung.

Gespaltener Jet im 2018

Vergangenes Jahr sorgten ein starkes Azorenhoch über dem Atlantik sowie zahlreiche Tiefdruckgebiet über Südwesteuropa für einen in zwei Teile gespaltenen Jetstream über Europa. Der nördliche Ast – der Polarjet – lag im Mittel über der Norwegischen See und der Barentssee, der südliche Ast hingegen über dem Mittelmeerraum. Letzterer wird auch Subtropen-Jet bezeichnet und ist im Normalfall nur im Winter ausgeprägt.

Besonders im Mittelmeerraum ist das Westwindband stärker als im Mittel.
Positive Anomalie des Westwindbands im Mittelmeerraum im Juli 2018.

Im Zwischenbereich konnten sich im Jahr 2018 wiederholt Hochdruckgebiete etablieren, somit gab es vor allem auf den Britischen Inseln sowie in Skandinavien ungewöhnlich heißes Sommerwetter. In Teilen Mitteleuropas gab es zudem eine extreme Dürre. Im Gegensatz dazu präsentierte sich das Wetter im Mittelmeerraum sowie im Bereich der Alpen von seiner wechselhaften Seite.

Rote Kobolde über den Alpen

Red Sprites oberhalb eines Gewitters in Mexiko

Vorherige Woche hat ein Photograph aus der Schweiz womöglich eines der besten Beispiele Europas von Roten Kobolden eingefangen. Diese etwas besondere Art von elektrischer Entladung fand am 6. August 2019 einige Kilometer oberhalb eines starken Gewitterkomplexes in Norditalien statt und wurde aus dem Schweizer Kanton Jura, etwa 200 km Luftlinie entfernt, fotografiert.

Rote Kobolde


Bei dieser Erscheinung, im Englischen Red Sprites genannt, handelt es sich um rötliche oder leuchtend rote Entladungen oberhalb von besonders heftigen Gewittern im Bereich der Mesosphäre. Sie treten in Höhen von bis zu 75 km auf und erreichen Längen von bis zu 20 km. Das sich zerteilende Kopfende der Entladung dehnt sich sogar bis auf 50 km aus. Die aufwärts verlaufenden Blitzkanäle zerfallen kurz nach Austritt aus der Wolkendecke in zahllose Verästelungen. Je nach Form gibt es „Karottenkobolde“, „Engelskobolde“ oder auch „Quallenkobolde“. Dabei können Kobolde einzeln oder in Schwärmen auftreten. Eine Beobachtung mit bloßem Auge ist meist nur aus größerer Entfernung zum Gewitter möglich, wenn der Himmel im Hintergrund des Spektakels extrem dunkel ist, da diese deutlich lichtschwächer sind als herkömmliche Wolke-zu-Boden-Entladungen.

Elektrische Entladungen in der Atmosphäre.
Elektrische Entladungen in der Atmosphäre.

Dank der enormen Fortschritte der Photographie ist es heutzutage auch mit guten, herkömmlichen Reflexkameras immer einfacher, genügend Licht einzufangen, um diese extrem kurzen und lichtschwachen Ereignisse zu dokumentieren. Hier ein paar Beispiele aus dem heurigen Sommer:



Titelbild: Red Sprites von der Raumstation ISS aus. © NASA

Spätsommer: typisches Wetter und Phänologie

Strohballen beim Sonnenuntergang

Der Spätsommer lässt sich zeitlich gar nicht so genau eingrenzen. Selbst für die Hauptjahreszeit Sommer gibt es unterschiedliche Definitionen, etwa die meteorologische, mit dem Start am 1. Juni und dem Ende am 31. August oder die kalendarisch-astronomische, mit dem Zeitraum 21. Juni bis 23. September. Im Großen und Ganzen kann man den Spätsommer aus meteorologischer Sicht etwa von Mitte August bis Mitte/Ende September veranschlagen.

Weniger Gewitter

Tageslänge und Sonnenhöchststand nehmen im Lauf des Spätsommers immer mehr ab, Richtung Ende August hat die Sonne nur noch so viel Kraft wie Mitte April. Die Kontinente heizen sich nicht mehr so stark auf und im Mittel gehen die Temperaturen der Luft schon etwas zurück. Dementsprechend lässt auch die Gewitterbereitschaft langsam etwas nach. Ruhig zugehen muss es deswegen aber noch lange nicht, so sind durchaus auch im September noch kräftige Gewitter möglich. Weiters kann es durchaus auch noch zu extremer Hitze kommen, beispielsweise in Niederösterreich. So wurden am 26.8.2011 in Waidhofen an der Ybbs 38,3 Grad gemessen, beachtenswert auch die 35,5 Grad am 17.9. in Gumpoldskirchen sowie ganz ähnlich die 34,9 Grad im deutschen Köln, diese gar erst am 19.9.1947. Andererseits kann es Ende August auch schon zu leichtem Frost in manchen Alpentälern sowie örtlich im Bayerischen Wald kommen. Auch Schneefall bis in höhere alpine Tallagen ist bei markanten Kaltluftausbrüchen bereits möglich.

Phänologischer Spätsommer

Auch die Vegetation gibt uns gute Hinweise, wann wir uns im Spätsommer befinden, der phänologische Aspekt dieser Teil-Jahreszeit. So wird der Spätsommer etwa durch den Start der Blüte des Heidekrauts und der Herbst-Anemone angezeigt. Zudem reifen bereits zahlreiche Früchte wie Frühapfel, Felsenbirne und Frühzwetschke und auch die Vogelbeere. Die Getreideernte ist weitgehend abgeschlossen, die zweite Heuernte, auch Grummet genannt, findet noch statt. Aus phänologischer Sicht befinden wir uns derzeit sogar schon im anbrechenden Frühherbst.

Titelbild © Adobe Stock

1816 – Das Jahr ohne Sommer

Der Sommer 1816 fiel einem Vulkanausbruch zum Opfer.

Das Jahr 1816 ging als das „Jahr ohne Sommer“ in die Geschichte ein, mit tagelangen Regenfällen und Gewittern, Nachtfrösten und stellenweise selbst mit Schnee bis in mittlere Lagen. Wir werfen hier einen kleinen Blick zurück in die Vergangenheit und erklären, was damals in der Atmosphäre los war. Das Jahr 1816 wird in weiten Teilen Europas und auch in Nordamerika als das „Jahr ohne Sommer“ bezeichnet. Ungewöhnliche Kälteperioden, die selbst Anfang Juli und Ende August im Nordosten der USA sogar zu Nachtfrost führten, waren nur eine der ungewöhnlichen Wetterkapriolen in jenem Jahr. Im Osten Kanadas soll es sogar zu heftigen Schneefällen gekommen sein. Auch ein Großteil Europas erlebte ganz und gar unsommerliches Wetter mit häufigem Regen und extrem niedrigen Temperaturen.

Hochwasser und Missernten

Viele Chroniken beispielsweise aus der Schweiz, dem Elsass oder auch dem südlichen Deutschland berichten von häufigem Hochwasser, der Rhein trat über die Ufer und überschwemmte ähnlich wie viele andere Flüsse im südlichen Mitteleuropa viele Landstriche. Die Luft war oft kalt genug, dass es in den Nordalpen mehrfach bis gegen 800 Meter herab schneite. Auch weite Teile Frankreichs und Großbritanniens erlebten über längere Phasen hinweg nasskaltes Wetter, welches zu Missernten führte. In einigen Regionen, besonders in der Schweiz, führte dies sogar zu Hungersnöten, da der Getreidepreis innerhalb kurzer Zeit extrem anstieg.

Vulkan als Ursache

Erst im frühen 20. Jahrhundert kam man den Ursachen für diese Witterungsanomalie auf die Spur. Im Jahre 1815, also ein Jahr zuvor, brach der Tambora-Vulkan in Indonesien aus. Dieser Ausbruch gehört bis heute zu den schwersten Eruptionen neuerer Zeit, die neben enormen Asche- und Staubmengen vor allem auch große Mengen an Schwefel in die Atmosphäre schleuderte. Dieser legte sich wie ein Schleier um die Erde und dämpfte die Sonnenstrahlung markant, wodurch die globale Temperatur der Erde für einige Jahre um rund 1 Grad absank. Zudem gab es bereits in den Jahren davor andere, schwächere Ausbrüche. In Kombination mit der Tambora-Eruption hatte diese ungewöhnliche Serie von Ausbrüchen einen folgenreichen Effekt auf das globale Klima.

Quelle Titelbild: pixabay

Alle Jahre wieder: Die Hundstage

Die Zeit vom 23. Juli bis zum 23. August ist landläufig als Hundstage bekannt und gilt als die heißeste Zeit im Jahr. Ihren Ursprung haben diese Tage im alten Ägypten rund zweitausend vor Christus: Rund um den 23. Juli wurde damals nämlich des hellste Stern Sirius am Morgenhimmel  sichtbar. Bei den alten Ägyptern war dieses astronomische Ereignis von besonderer Bedeutung, da zu diesem Zeitpunkt oftmals die Nilflut einsetzte. Außerdem glaubten die Menschen, dass der hellste Stern am Morgenhimmel als „zusätzliche“ Sonne für die sommerliche Hitze verantwortlich sei. Die Dauer der Hundstage erklärt sich daraus, dass vom ersten Auftauchen des Sterns in der Morgendämmerung bis zum vollständigen Erscheinen des Sternbilds etwa ein Monat vergeht.

Hundstage und Hitze in Europa: Zufall

Im Alpenraum ist während der Hundstage tatsächlich die heißeste Phase des Jahres: Häufig erleben wir von Ende Juli bis Mitte August sehr heiße Tage und warme, teils sogar tropische Nächte. Auch die meisten Hitzerekorde in Mitteleuropa stammen aus dieser Zeit. Mit dem Sternbild „Großer Hund“ hat das aber nichts zu tun, da sich das Erscheinen von Sirius im Laufe der Jahrtausende verschoben hat: Mittlerweile taucht Sirius erst ab Ende August am Morgenhimmel auf, zudem wird das gesamte Sternbild hierzulande erst im Winter vollständig sichtbar.

Durchschnittliche Temperaturen

Die aktuellen Modellprognosen deuten mittelfristig auf durchschnittliche Temperaturen hin. In nachfolgender Grafik ist der Temperaturtrend in rund  1.500 m Höhe für das nördliche Alpenvorland dargestellt. Für die entsprechenden Höchstwerte im Flachland kann man etwa 15 Grad dazurechnen. Die vorherrschende Hitzeperiode hält aus heutiger Sicht noch bis Ende der Woche an, anschließend pendeln sich die Temperaturen im Bereich des langjährigen Mittels ein (rote Kurve). Zur Abschätzung der Temperaturen im Flachland, kann man rund 15 Grad zu den in der Grafik abgelesenen Temperatur dazurechnen. Für Anfang August kündigen sich somit Werte oberhalb der 30-Grad-Marke an.

Zum Monatsende zeichnet sich ein schwacher Temperaturrückgang ab. © UBIMET / NCEP
Gegen Monatsende erreichen die Temperaturen wieder durchschnittliches Niveau . © UBIMET / NCEP

 

Titelbild: travel oriented auf Visual Hunt / CC BY-SA

Altocumulus Lenticularis: Beeindruckende Föhnfische in Indonesien

Föhnwolke

Diese ästhetischen Wolken, im Fachjargon Altocumulus lenticularis, also “linsenförmige hohe Haufenwolken” genannt, entstehen wenn ein in der Luftströmung stehender Berg von mäßig feuchter Luft überströmt wird. Die zunächst nicht gesättigte Luft kühlt beim Aufsteigen bis zur Wolkenbildung ab, an der Rückseite des Berges sinkt die Luft hingegen wieder ab und die Wolke löst sich auf. Die Luft weht also durch diese ortsfeste Wolke hindurch und während sich die Wolke am windzugewandten Ende dauernd neu bildet, löst sie sich am windabgewandten Ende ständig auf. Im Alpenraum werden sie meist als Föhnfische bezeichnet, da ihre Form an den Körper eines Fisches ohne Flossen erinnert. Am Mittwoch gab es beeindruckende Bilder davon am Vulkan Rinjani auf der indonesischen Insel Lombok.

Auch ohne Föhn

Diese Wolken entstehen speziell bei einer stabil geschichteten Atmosphäre und können bei ausreichender Feuchte auch mehrere Stockwerke aufweisen. Gute Bedingungen dafür gibt es besonders häufig bei alleinstehenden, hohen Bergen wie es meist bei Vulkanen der Fall ist. Manchmal entstehen Föhnfische aber auch anhand von Schwerewellen, die sich an der Grenze zwischen zwei übereinander liegenden Luftschichten mit unterschiedlicher Windrichtung bilden. Dann haben sie üblicherweise auch eine Eigenbewegung und können hunderte von Kilometern entfernt von einem Gebirge auftreten.

In den Alpen treten solche Wolken in der Regel bei Föhn auf, nicht selten allerdings auch bei einer westlichen Höhenströmung. Ein paar schöne Beispiele von Lenticularis folgen unten bzw. gibt es auch hier: Föhnwolken – Beeindruckende Aufnahmen aus Vorarlberg

Föhnwolken in der Schweiz. © www.foto-webcam.eu
Föhnwolken in der Schweiz. © www.foto-webcam.eu
Föhnfische am Schneeberg. © https://www.panomax.com/en.html
Föhnfische am Schneeberg. © https://goldbergen.panomax.com/

.

Titelbild: Miqade @suryadelalu via Twitter

10. Juli 1916: Tornado in Wiener Neustadt

Tornado südlich von Wien © Stormhunters Austria

Am Nachmittag des 10. Juli 1916 bildete sich im Schneeberggebiet ein Gewitter, das sich rasch intensivierte und als sogenannte Superzelle nach Osten fortbewegte. Gegen 16:15 Uhr kam es im Bereich Dreistetten (NÖ) zur Bildung eines Tornados. In der Folge zog dieser über Wiener Neustadt hinweg und löste sich kurz vor der Leithaau bei Lichtenwörth wieder auf. Auf seiner etwa 15 km langen Zugbahn hinterließ er teils große Verwüstungen.

Bis zu 300 km/h

Besonders stark betroffen waren die nördlichen Stadtteile von Wiener Neustadt. Zunächst wurden gerade erst errichtete Telegraphen- und Strommasten von den bis zu 300 Kilometer pro Stunde schnellen Winden zerstört. In weitere Folge zog der Tornado über die Wiener Neustädter Lokomotivfabrik hinweg, hier gab es die meisten der insgesamt 32 Todesopfer. Der finanzielle Schaden belief sich in Summe auf 900.000 Kronen. Auf der internationalen Fujita-Skala erreichte der Tornado die zweithöchste Kategorie 4 und gilt als der stärkste Tornado, der sich je in Österreich bildete.

Gefährdete Region

Die Region am Alpenostrand im Bereich des Wiener Beckens zählt neben der südlichen Steiermark und dem oberösterreichischen Flach- und Hügelland zu den am ehesten durch Tornados gefährdeten Bereichen in Österreich. So wurde Wiener Neustadt neben 1916 auch in den Jahren 1903, 1930 und 1946 von Tornados heimgesucht. Vor exakt einem Jahr gab es zudem einen spektakulären Tornado in der Nähe des Flughafens Wien-Schwechat. Der 10. Juli ist somit für Meteorologen in Österreich eine besonderer Tag.

Titelbild: Tornado am 10. Juli 2017 nahe Wien. © Stormhunters Austria

Das Wetter am Siebenschläfertag sieben Wochen bleiben mag

Siebenschläfer schaut wie das Wetter wird

Der Siebenschläfertag ist ein altbekannter Lostag in der Meteorologie, welcher sich in zahlreichen Bauernregeln widerspiegelt. Das Wetter vom 27. Juni soll demnach den Trend für die nächsten 7 Wochen setzen. Anbei eine kleine Auswahl an Bauernregeln:

  • Das Wetter am Siebenschläfertag sieben Wochen bleiben mag.
  • Scheint am Siebenschläfer Sonne, gibt es sieben Wochen Wonne.
  • Wie’s Wetter am Siebenschläfertag, so der Juli werden mag.
  • Ist der Siebenschläfer nass, regnet’s ohne Unterlass.
  • Schlafen die Siebenschläfer im Regen, wird’s ihn noch sieben Wochen lang geben.

Meteorologischer Hintergrund

Tatsächlich gibt es im Hochsommer eine statistisch nachweisbare Erhaltungstendenz von Wetterlagen im Alpenraum. Für diese meteorologische Singularität ist allerdings nicht nur ein bestimmter Tag relevant, da sie allgemein für die letzte Juniwoche bzw. die erste Juliwoche oft zutrifft. Durch die gregorianische Kalenderreform findet der Tag eigentlich auch erst am 7. Juli statt. Auf die erste Juliwoche trifft diese Singularität in Süddeutschland und im Alpenraum etwa 60 bis 80% der Fälle zu. Im maritim geprägten Klima Norddeutschlands ist dies hingegen deutlich seltener der Fall.

Weichenstellung

Etabliert sich Ende Juni bzw. Anfang Juli somit eine stabile Hochdruckzone über Europa, stehen die Chancen gut, dass sie bis weit in den Juli hinein erhalten bleibt. Das gleiche gilt allerdings auch umgekehrt: Liegt der Jetstream (ein Starkwindband in der Höhe, das kalte von warmen Luftmassen trennt) weiter südlich, so ist der Weg frei für Tiefdruckgebiete in Richtung Mitteleuropa und anhaltend wechselhafte Bedingungen sind vorprogrammiert.

Wetterumstellung in Sicht

Am kommenden Wochenende steigen die Temperaturen neuerlich an und verbreitet steht hochsommerlich heißes Sommerwetter bevor. Im Laufe der kommenden Woche deuten die Modelle aber auf unbeständiges und weniger heißes Wetter hin, somit muss man derzeit nicht davon ausgehen, dass sich die Hitze ununterbrochen fortsetzt.

21. Juni: Astronomischer Sommerbeginn

Sommerliche Stimmung - pixabay.com

Obwohl die Tage ab dem 21. Juni langsam wieder kürzer werden, signalisiert die Sonnenwende in unseren Breiten erst den Sommerbeginn. Im Mittel setzt sich das wirklich heiße Wetter nämlich erst einige Wochen später ein. Die Ursache liegt in der thermischen Trägheit der Land- und vor allem Meeresoberflächen. Der längste Tag und der früheste Sonnenaufgang fallen wegen der Neigung der Erdachse und der elliptischen Bahn unseres Planeten um die Sonne aber nicht auf den selben Tag, so findet der späteste Sonnenuntergang am 26. Juni statt.

Der späteste Sonnenuntergang findet am 26. Juni statt.
Der späteste Sonnenuntergang findet am 26. Juni statt.

Sommersonnenwende

Zum astronomischen Sommerbeginn, auch Sommersonnenwende genannt, sind die Tage im gesamten Jahr am längsten: In Wien etwa geht die Sonne bereits kurz vor 5 Uhr in der Früh auf und erst gegen 21 Uhr wieder unter. An wolkenlosen Tagen scheint die Sonne somit gut 16 Stunden. In Hamburg sind sogar 17 Stunden Sonnenschein möglich. Von nun an werden die Tage wieder kürzer: Vorerst aber nur langsam, bis zum Monatsende um gerade einmal vier Minuten.

Die Tageslänge im Verlauf des Jahres. © UBIMET
Die Tageslänge im Verlauf des Jahres. © UBIMET

Titelbild © Adobe Stock

Astronomischer Sommer beginnt mit kräftigen Gewittern

Quellwolken

Obwohl die Tage ab dem 21. Juni langsam wieder kürzer werden, signalisiert die Sonnenwende in unseren Breiten erst den Sommerbeginn. Im Mittel setzt sich das wirklich heiße Wetter nämlich erst einige Wochen später ein. Die Ursache liegt in der thermischen Trägheit der Land- und vor allem Meeresoberflächen. Der längste Tag und der früheste Sonnenaufgang fallen wegen der Neigung der Erdachse und der elliptischen Bahn unseres Planeten um die Sonne aber nicht auf den selben Tag, so findet der späteste Sonnenuntergang am 26. Juni statt.

Der späteste Sonnenuntergang findet am 26. Juni statt.
Der späteste Sonnenuntergang findet am 26. Juni statt.

Sommersonnenwende

Zum astronomischen Sommerbeginn, auch Sommersonnenwende genannt, sind die Tage im gesamten Jahr am längsten: In Wien etwa geht die Sonne bereits kurz vor 5 Uhr in der Früh auf und erst gegen 21 Uhr wieder unter. An wolkenlosen Tagen scheint die Sonne somit gut 16 Stunden. Von nun an werden die Tage wieder kürzer: Vorerst aber nur langsam, bis zum Monatsende um gerade einmal vier Minuten.

Die Tageslänge im Verlauf des Jahres. © UBIMET
Die Tageslänge im Verlauf des Jahres. © UBIMET

Schauer und Gewitter

Am Freitag liegt Österreich am Rande einer schwachen Kaltfront über Deutschland. Vor allem im Osten ziehen von der Früh weg teils gewittrige Schauer durch. Diese klingen am Vormittag vorübergehend ab und die Sonne kommt zum Vorschein, im Berg- und Hügelland bilden sich aber rasch neue Quellwolken und ab Mittag wird es dort auch wieder zunehmend gewittrig. Im Donauraum und im östlichen Flachland beruhigt sich das Wetter hingegen vorübergehend. Der Wind weht nur schwach bis mäßig aus Nordost und die Höchstwerte liegen zwischen 19 und 28 Grad.

Titelbild © Adobe Stock

Verhaltensregeln bei Gewittern

Gewitter mit Blitz

Allgemein kündigt sich ein Blitz nicht an und kann manchmal auch mehrere Kilometer von der Gewitterwolke entfernt einschlagen. Blitze schlagen zudem nicht immer an den höchsten Objekten ein und können durchaus auch mehr als einmal den selben Punkt treffen.

Gefahrenquelle Blitz

Bei  einem Gewitter besteht nicht nur die Gefahr, dass man direkt von einem Blitz getroffen wird, sondern auch das Risiko, in der Nähe eines Einschlags zu sein. Dabei springt der Blitz aufgrund der extrem hohen Spannung auf alle Stromleiter im unmittelbaren Umfeld über – schwere Verletzungen sind die Folge. Weiters gibt es auch die Gefahr der Schrittspannung: Wenn ein Blitz in unmittelbarer Nähe am Boden einschlägt, kann der Strom durch den menschlichen Körper fließen, wenn man im Zuge eines Schrittes den Boden an zwei unterschiedlichen Punkten mit unterschiedlichem elektrischen Potential berührt. Alleine in Deutschland und Österreich sterben jedes Jahr rund 10 Menschen an den Folgen eines direkten oder indirekten Blitzschlages! Besonders gefährdet sind meist Landwirte und Sportler (besonders Wanderer, Bergsteiger, Golfspieler, aber auch Fußballer und Wassersportler!)

10.000 Grad bei Blitzschlag

Bei einem Blitzschlag werden durchschnittliche Stromstärken von 20.000 Ampere gemessen, vereinzelt werden aber sogar mehr als 250.000 Ampere erreicht. Die Temperatur kann direkt im Blitzkanal kurzzeitig auf mehrere 10.000 Grad steigen. Das explosionsartige Verdampfen des Wassers löst eine Schockwelle aus, die man in weiterer Folge als Donner wahrnimmt.

Wo findet man Schutz?

Wenn man sich im Freien befindet sollte man hohe sowie generell stromleitende Gegenstände meiden sowie fern vom Wasser bleiben. Am besten ist der Unterschlupf in einem Haus mit verschlossenen Fenstern und Türen oder im Auto. Ist man im Freien, sollte man folgende Notmaßnahmen beachten:

  • Auf den Boden kauern, am besten in einer Mulde oder Senke. Die Beine müssen dabei eng beieinander stehen um die Schrittspannung gering zu halten. Im Notfall ist es jedenfalls besser zu hüpfen, als zu laufen.
  • Niemals unter einzelstehenden Bäumen (ganz egal welche Baumart) oder Stromleitungen Schutz suchen!
  • Im Gebirge: Von Graten und Gipfeln fernhalten und Stahlseile und Skilifte meiden. Nahe einer Felswand gibt es ein relativ sicheres Dreieck, dessen Seitenlänge am Boden der Höhe der Wand entspricht.
  • Wenn man keinen Donner mehr hört, bedeutet das nicht, dass das Gewitter vorbei ist. Blitze können weit entfernt von der Wolke einschlagen. Deshalb ist es auch wichtig, dass man nach dem vermeintlich letzten Donner noch für längere Zeit in Sicherheit bleibt.
  • Stets lokale Wetterberichte lesen und die Tour entsprechend planen (nicht auf Apps verlassen). Bei einer erhöhten Gewitterneigung sollte man nur kurze Touren mit Ausstiegs- oder Schutzmöglichkeiten durchführen.
  • Stets den Himmel beobachten : So erkennt man, ob sich in der Nähe mächtige Quellwolken bzw. Gewitter entwickeln.

 

Konvektion in der Atmosphäre

Die Quellwolke eines Gewitters.

Die Sonneneinstrahlung erwärmt die verschiedenen Oberflächen wie beispielsweise Wasser, Acker und Wald unterschiedlich schnell bzw. stark. Dies wirkt sich direkt auf die Temperatur und somit auch auf die Dichte der bodennahen Luft aus. Die wärmeren Bereiche der bodennahen Luft sind leichter als die Umgebungsluft, somit steigt die Luft dort auf. Der Auftrieb klingt erst dann wieder ab, wenn die Luft im Aufwindbereich die gleiche Temperatur wie jene der Umgebungsluft besitzt. Danach sinkt die Luft seitlich wieder ab. Die abwärtsgerichtete Strömung ersetzt schließlich die Luft in den unteren Schichten und es der Kreislauf der Konvektion wird abgeschlossen. Ein typisches Beispiel für einen abgeschlossenen Konvektionskreislauf stellt das Land-See-Windsystem dar.

Eine Seewind-Konvergenz löst Gewitter auf Kuba aus.
Eine Seewind-Konvergenz löst Gewitter auf Kuba aus.

Seewind und Gewitter

Die Seebrise stabilisiert die Luft in Küstennähe, weiter im Landesinneren kann das Zusammenströmen von Seewind und allgemeinem Wind hingegen zur Auslösung von Schauern und Gewittern führen. Dies tritt besonders häufig auf größeren Inseln und Halbinseln auf, wie beispielsweise in Istrien (Kroatien). Gelegentlich kann man dies aber auch im Bereich der Nord- und Ostsee beobachten.

Seewind an der Adria. © EUMETSAT / UBIMET
Seewind sorgt an den Küsten oft für wolkenlose Bedingungen. © EUMETSAT / UBIMET

Thermik

Im Sommerhalbjahr kann die Sonnenstrahlung regelrechte Thermikschläuche verursachen, die beispielsweise Segelflieger zum Auftrieb nutzen. Das ist auch der Grund, warum Paragleiter oft über sonnenbeschienenen Berghängen enge Kreise ziehen. Die Folgen aufsteigender Luft sind oftmals Quellwolken, welche bei einer stabilen Schichtung der Luft hochbasig und klein bleiben.

Paragleiter am Alpenrand. © www.foto-webcam.eu
Paragleiter am Alpenrand. © www.foto-webcam.eu

Cumulonimbus

Wenn die bodennahe Luft jedoch sehr feucht und die Luftschichtung labil ist, dann können die Quellwolken rasch zu Schauern und Gewittern heranwachsen.  An der Obergrenze der Troposphäre, also jenem Bereich der Atmosphäre in dem sich unser Wetter abspielt, befindet sich eine Temperaturinversion. Die stabile Schicht stellt eine unüberwindbare Barriere für Gewitterwolken dar, weshalb sich die Quellwolke dort seitlich ausbreitet und die charakteristische Ambosswolke entsteht (Cumulonimbus incus; siehe auch Titelbild).

Vereinfachte Darstellung der Konvektion innerhalb einer Gewitterwolke. © Nikolas Zimmermann
Konvektion innerhalb einer Gewitterwolke. © Nikolas Zimmermann

Cumulus – Die Wolke

@ https://stock.adobe.com

Entstehung

Cumuluswolken entstehen meist bei freundlichem Wetter, wenn die Sonne die bodennahen Schichten erwärmen kann und somit Luftblasen aufsteigen, die bei Abkühlung kondensieren und dadurch sichtbar werden. Da das Höhenniveau, in dem die Bedingungen für Kondensation erreicht werden, nicht stark in der Fläche variiert, ist zum einen die Unterseite der einzelnen Cumuluswolken relativ glatt und zum anderen in einer vergleichbaren Höhe.

Bilden sich Cumuluswolken bereits am frühen Morgen, können sie als Indiz für spätere Gewitter angesehen werden.

Cumulus humilis @ https://stock.adobe.com
Cumulus humilis @ https://stock.adobe.com

Aufbau und Unterarten

Über der glatten und grauen Unterseite wölben sich schneeweiße „Blumenkohlköpfe“ auf, die eine meist bauschige Form aufweisen. Je nach Feuchtegehalt der Atmosphäre befindet sich der Beginn der Wolke in wenigen hundert Metern Höhe, während die Oberkante der Wolken bis zu zwei Kilometer hoch hinaufwächst (Ausnahme Cumulus congestus, siehe unten), sich dann aber immer noch im unteren Teil der Atmosphäre befindet. Aufgrund ihrer niedrigen Höhe sind Cumuli reine Wasserwolken, haben also keinen Eisanteil. Je nach Höhe der Wolke werden die Cumulus-Wolken in vier Unterarten aufgeteilt.

Cumulus mediocris @ https://stock.adobe.com
Cumulus mediocris @ https://stock.adobe.com

Cumulus fractus (lateinisch für zerbrochen): Durch starken Wind auseinandergerisse Haufenwolken, sichtbar als Wolkenfetzen.

Cumulus humilis: Sind die kleinsten Vertreter ihrer Gattung mit einer Höhe bis zu einem Kilometer. Werden auch als „Schönwetterwolken“ bezeichnet.

Cumulus mediocris: Mittelhohe Haufwolken bis zu einer Höhe von 1,2 Kilometer, werden auch noch als „Schönwetterwolken“ bezeichnet.

Cumulus congestus: Nach der Haufenwolke das nächste Stadium mit bis zu 6 km Höhe, sind meist höher als breit und stehen für starke Aufwinde, bringen Schauer und teils kräftige Windböen.

Cumulus congestus @ https://stock.adobe.com
Cumulus congestus @ https://stock.adobe.com

30 Grad in Sicht

Bei sommerlichen Temperaturen kann man sich ein Eis schmecken lassen.

30 Grad im Frühjahr sind eine Seltenheit, doch bereits ab Mitte April möglich. In allen Bundesländern mit Ausnahme von Kärnten wurden die frühesten 30-Grad-Tage im April verzeichnet. Dabei hat die Stadt Salzburg die Nase vorne, hier wurden schon am 17. April 1934 30,0 Grad gemessen und damit hält die Mozartstadt schon seit über 80 Jahren den Österreich-Rekord. Im Jahr 2018 wurde die 30-Grad-Marke in Salzburg am 20. April erreicht. Weitere Infos zum ersten 30er in den vergangenen Jahren gibt es auch hier.

Meist erst im Juni

Der Zeitpunkt des ersten Hitzetages liegt im langjährigen Durchschnitt je nach Region erst zwischen Anfang und Mitte Juni. Dabei machte sich in den letzten Jahren die Klimaerwärmung deutlich bemerkbar: In der Stadt Salzburg zum Beispiel gab es den ersten 30er in den 1990er Jahren im Mittel am 12. Juni, im letzten Jahrzehnt hingegen schon durchschnittlich am 1. Juni.

Seehöhe wichtiger Faktor

Aufgrund der Seehöhe sind Hitzetage oberhalb von etwa 800 Meter auch im Hochsommer eine Seltenheit und können an einer Hand abgezählt werden. Bei extremen Hitzewellen kann die Temperatur aber sogar noch in 1.500 Meter Höhe über die 30 Grad steigen. So liegt der Temperaturrekord in Galtür (Tirol, 1587 m) bei 31 Grad (gemessen am 6. Juli 1957) oder in Flattnitz (Kärnten, 1442 m) bei genau 30 Grad (27. Juli 1983).

Heuer am Sonntag erster 30er?

2019 wird es voraussichtlich am kommenden Sonntag, am 2. Juni, so weit sein. Vor allem der Walgau und das Oberinntal von Landeck bis Innsbruck sind heiße Kandidaten für den ersten Hitzetag des Jahres. Am Montag gibt es dann recht verbreitet Höchstwerte zwischen 26 und 30 Grad.

Am Wochenende vielerorts 30 Grad

Die 30 Grad werden am Sonntag geknackt.

Für viele ist das erreichen der 30-Grad-Marke das untrügliche Zeichen, dass der Sommer endlich da ist. An diesem Wochenende ist es erstmals in diesem Jahr der Fall: Am Samstag liegen die Spitzenwerte am Oberrhein bei 29 Grad, spätestens am Sonntag gibt es dann verbreitet Höchstwerte um 30, lokal auch 32 Grad.  Doch wann fallen in Deutschland die 30 Grad zum ersten Mal im langjährigen Mittel?

Bereits im April möglich

30 Grad im Frühjahr sind eine Seltenheit, doch bereits ab Mitte April möglich. Besonders früh wurde in Deutschland die magische 30-Grad-Marke im Jahr 1934 übertroffen, gleich 4 Städte (Cottbus, Halle, Jena und Zerbst) verzeichneten am 17. April mehr als 30 Grad. Am heißesten wurde es damals in Jena mit einem Maximum von 31,2 Grad. Auch im vergangenen Jahr 2018 gab es im Südwesten bereits am 22. April Höchstwerte um 30 Grad.

Trend: immer früher

Der Zeitpunkt des ersten Hitzetages liegt im langjährigen Durchschnitt je nach Region erst zwischen Anfang Juni und Mitte Juli, wobei in Küstennähe in manchen Jahren die 30-Grad-Marke nicht erreicht wird. Auch die Klimaerwärmung machte sich in den letzten Jahren deutlich bemerkbar. In der Stadt Freiburg zum Beispiel gab es den ersten 30er in den 1970er Jahren im Mittel erst Anfang Juli, im letzten Jahrzehnt hingegen schon durchschnittlich einen Monat früher. Auch die Anzahl der heißen Tage hat besonders seit Beginn der 1990er-Jahre deutlich zugenommen.

Seehöhe und geografische Breite

Aufgrund der Seehöhe sind Hitzetage oberhalb von etwa 700 Meter auch im Hochsommer eine Seltenheit und können hier, so wie auch in Küstennähe, zumeist an einer Hand abgezählt werden. Bei extremen Hitzewellen kann die Temperatur aber sogar noch in deutlich über 1.000 Meter Höhe über 30 Grad steigen. So liegt der Temperaturrekord am Großen Arber (1446 m) bei 30,3 Grad (gemessen am 27. Juli 1983) oder am Fichtelberg (1215 m) bei beachtlichen 30,6 Grad (07. Juli 1957).

Stau am Dach der Welt

Wer glaubt, der Mount Everest sei mit seinen 8848 Metern Seehöhe ein einsames Plätzchen, der irrt. Zahlreiche (kommerzielle) Expeditionen versuchen sich alljährlich am höchsten Berg der Welt und dies führt mitunter zu Staus, wie auch diese Woche vielerorts berichtet wurde. Der Ansturm soll mitunter für den Tod mehrerer Alpinistinnen bzw. Alpinisten verantwortlich gewesen sein, die allesamt laut Berichten von Sherpas an Erschöpfung gelitten hatten –  das mehrstündige Warten an Schlüsselstellen  zehrt zusätzlich an den ohnehin schon geforderten Kräften.

Hauptsaison Frühjahr

Die meisten Expeditionen finden im Frühling statt, da zu dieser Jahreszeit die günstigsten Wetterbedingungen herrschen, um den Gipfel zu erreichen. Ausschlaggebend hierfür sind die Windverhältnisse: Im Zeitraum zwischen Ende April bis Ende Mai zieht sich der Polarjet nach Norden zurück, zugleich schwächt sich der Subtropenjet ab, die Windgeschwindigkeiten in den extremen Hochlagen (> 6000 m) gehen deutlich zurück. Aber auch dann  sind relativ ruhige Wetterphasen nur von kurzer Dauer, oft müssen die Alpinisten wochenlang im Basiscamp (5,364 m) auf gutes Wetter warten.
Spätestens Ende Juni setzt der Monsun ein, welcher aus südlichen bis östlichen Richtungen sehr feuchte Luft aus dem Golf von Bengalen an den Himalaya heranführt und südlich des Gebirgszuges für äußert ergiebigen Regen sorgt. Aufgrund dieser Konstellation befindet sich eine der regenreichsten Regionen des Planeten in Nordostindien (siehe auch: Die nassesten Orte der Erde).


Quelle Titelbild: Ananya Bilimale / Unsplash.com

Phänologischer Frühsommer – Holunderblüte

Holunderblüte.

Die Beobachtung alljährlich wiederkehrender Abläufe in der Natur wie Blüte, Blattentfaltung oder Fruchtreife wird als Phänologie bezeichnet. Dabei interessieren uns besonders die von Jahr zu Jahr verschiedenen Zeitpunkte solcher Erscheinungen.

10 Jahreszeiten

Phänologisch gesehen beginnt der Sommer mit den ersten Blüten von schwarzem Holunder sowie Robinie. Der phänologische Sommer wird nochmals genauer unterteilt in:

  • Frühsommer: Blüte des schwarzen Holunders und der Robinie
  • Hochsommer: Blüte der Linde und Fruchtreife der (roten) Johannisbeere
  • Spätsommer: Fruchtreife früher Apfelsorten und der Eberesche

Abhängig von der geographischen Lage sowie der Höhe über dem Meeresspiegel unterscheidet sich die erste Blüte oft vom meteorologischen oder astronomischen Sommerbeginn. Der phänologische Kalender besteht übrigens aus 10 Jahreszeiten: Vorfrühling, Erstfrühling, Vollfrühling, Frühsommer, Hochsommer, Spätsommer, Frühherbst, Vollherbst, Spätherbst und Winter.

Wo beginnt der Frühsommer zuerst?

Generell setzt die Blüte in den milden Regionen Österreichs vom Grazer Becken bis in den Wiener Raum und zum Seewinkel sowie im Schweizer Tessin zuerst ein, gefolgt vom Oberrheingraben in Deutschland. Der Blütenbeginn des schwarzen Holunders sowie der Robinie startet in den genannten Regionen im Schnitt in der ersten Maiwoche. In weiterer Folge breitet sich die Blüte nordostwärts aus. In den Hochlagen des Böhmerwalds, des Erzgebirges oder auch in den höher gelegenen Regionen der Alpen ist es hingegen erst ganze drei bis fünf Wochen später soweit.

Witterung entscheidend

Je nach Witterung können die jeweiligen Phasen deutlich früher oder später als üblich eintreten. Im Jahr 2018 gab es die ersten Blühmeldungen bereits im April, heuer sorgt die kühle Witterung seit Ende April dagegen für eine Verzögerung. Nur im Westen Deutschlands gibt es bereits Meldungen über ersten Blüten des Schwarzen Holunders. Bei kalter Witterung kann sich die Blüte aber auch auf Anfang Juni verschieben, wie es zuletzt im Jahr 2013 in der Schweiz der Fall war.

Zeckenwetter: Temperatur und Feuchtigkeit

Vorsicht Zecken

Entscheidend für das Erscheinen der ersten Zecken ist in erster Linie die Temperatur. Spätestens wenn kein Schnee mehr liegt und die Temperaturen an mehreren aufeinanderfolgenden Tagen 7 bis 10 Grad erreichen, erwachen die ersten Zecken aus der Winterstarre. Dies passiert immer häufiger bereits im Februar. Kälteeinbrüche im März und im April sorgen zwar für abrupte Einbrüche der Zeckenaktivität, den Zecken schadet das aber in der Regel nicht. Neben der Temperatur spielt weiters auch die Feuchtigkeit eine wichtige Rolle: Wenn es im Frühjahr nach längeren Schönwetterperioden sehr trocken ist, ziehen sich die Zecken vorübergehend zurück. Regnet es dann wieder, verlassen sie schnell die schützende Laubstreu und suchen verstärkt nach Wirten. Die Zeckenaktivität kann dann regelrecht explodieren!

Sommer

Im Frühsommer bremsen vorwiegend trockene Wetterphasen die Zeckenaktivität ein, also wenn es für mehrere Tage oder gar Wochen nicht regnet und hohe Temperaturen für eine hohe Verdunstung sorgen. Im Hochsommer lässt die Aktivität allgemein nach, allerdings befinden sich dann besonders viele Menschen im Grünen, weshalb es weiterhin zu zahlreichen Bissen kommt.

Herbst und Winter

In manchen Jahren lässt die Zeckenaktivität nach dem Sommer langsam nach, wenn der Sommer allerdings sehr heiß und trocken war, kann die Zeckenaktivität im Spätsommer und Herbst neuerlich ansteigen. Ab etwa Mitte November wird es in Mitteleuropa aber meist zu kalt für die Zecken, um aktiv auf Wirtsuche zu gehen. Tiefe Temperaturen hemmen ihre Beweglichkeit bis hin zur Kältestarre. Eine klare Temperaturschwelle, unter der Zecken nicht mehr aktiv sind, gibt es nicht, nur Dauerfrost bringt ihre Aktivität sehr schnell zum Erliegen. Auch mitten im Winter können Zecken allerdings aktiv werden, wenn kein Schnee liegt und es an mehreren aufeinander folgenden Tagen Höchsttemperaturen von etwa 10 Grad gibt. Im extrem milden Winter 2006/07 gab es nach eigenen Beobachtungen fast durchgehend aktive Zecken.

Vorsicht Zecken, hohes Gras und Unterholz meiden
Zecken halten sich nahe zum Boden auf. © Adobe Stock

Immer mehr FSME-Fälle

Zecken lassen sich nicht von Bäumen auf ihre Opfer fallen, sondern mögen es bodennah und feucht. Die Parasiten krabbeln auf Grashalme und Büsche und warten geduldig auf den Moment, in dem ein potentieller Wirt sie streift und mitnimmt. Schützen kann man sich mit geschlossener Kleidung und Sprays, wobei auch diese keine Sicherheit garantieren. Nach jeden Wald- oder Wiesenspaziergang muss man sich jedenfalls nach den Blutsaugern an allen Körperstellen absuchen und etwaige Zecken möglichst schnell mit einer Zeckenzange entfernen.

FSME-Fälle Österreich Deutschland
2016 89 347
2017 116 486
2018 154 584

Eine Bissstelle sollte desinfiziert und auf jeden Fall noch länger beobachtet werde: Bei einer Rötung oder grippeähnlichen Symptomen wie Fieber, Kopf- und Gliederschmerzen muss ein Arzt konsultiert werden. Die Anzahl an FSME-Erkrankungen hat in den letzten Jahren kontinuierlich zugenommen, so gab es etwa in Österreich noch nie so viele Fälle wie im Jahr 2018. Bei der Hälfte der Erkrankungen gab es einen schweren Krankheitsverlauf mit einer Gehirnentzündung, 5 davon endeten tödlich. Nur mit einer Impfung kann man dieses Risiko minimieren.

Titelbild © AdobeStock

Was ist ein Höhentief?

Höhentief auf Wetterkarte

Kaltlufttropfen

Höhentiefs liegen in mehren Kilometern Höhe und zeichnen sich durch niedrige Temperaturen im Vergleich zur Umgebung aus. Deren Entstehung wird einerseits durch Verwirbelungen des polarumlaufenden Jetstreams begünstigt, andererseits können sich auch ehemalige Tiefdruckgebiete zu solchen Kaltlufttropfen umwandeln, wenn das Bodentief durch Reibung aufgelöst wird und das Höhentief stattdessen erhalten bleibt. In einem begrenzten Gebiet von etwa 100 bis 1000 Kilometern befindet sich dann deutlich kältere Luft. Da diese kalte Anomalie aber nur in der oberen Hälfte der Troposphäre ausgeprägt ist, scheinen diese Gebiete nicht auf den Bodenwetterkarten auf.

Das Höhentief im IR-Satbild am Samstag um 14 Uhr. © EUMETSAT / UBIMET
Ein Höhentief im IR-Satbild am Samstag um 14 Uhr. © EUMETSAT / UBIMET

Labile Schichtung der Luft

Ein Höhentief wirkt sich merklich auf das tägliche Wettergeschehen aus, denn Höhenkaltluft sorgt für eine verstärkte vertikale Temperaturabnahme und somit für eine Destabilisierung der Atmosphäre. Besonders im Frühjahr und Sommer entstehen unter dem Einfluss der Höhenkaltluft Quellwolken, welche im Tagesverlauf zu Schauern und Gewittern heranwachsen. Die Lebensdauer von Kaltlufttropfen ist allerdings meist auf ein paar Tage bis etwa eine Woche begrenzt, da sich die Temperaturunterschiede in der Höhe allmählich ausgleichen.

Vorhersagegenauigkeit

Wenn Höhenkaltluft im Spiel ist, nimmt die Vorhersagbarkeit des Wetters etwas ab: Einerseits werden Kaltlufttropfen durch die bodennahe Strömung gesteuert, was sich negativ auf die Qualität von Modellprognosen auswirkt, andererseits sorgt die konvektive Wetterlage für große Unterschiede auf engem Raum. Vor allem räumlich detaillierte Prognosen, wie etwa jene von Wetter-Apps, sind bei solchen Wetterlagen also mit Vorsicht zu genießen.

Klima im Mai: Von Frost bis Hitze

@ https://stock.adobe.com

Mit den Temperaturen geht es im Mai deutlich bergauf, in Deutschland liegt das langjährige Mittel im Mai mit etwa 12 Grad um rund 5 Grad höher als im April. Dabei fließen auch die Nächte in die Berechnungen ein. Am mildesten ist es im Oberrheingraben mit 15 Grad, in Mittelgebirgslagen und an der Ostsee kommt man hingegen nur auf ca. 11 Grad. Die Regenmenge beträgt im Flächenmittel knapp 70 mm, wobei es im Norden und Osten nur 50 bis 60 mm regnet, an der Nordsee teils noch weniger. Vom Schwarzwald bis zum Alpenrand liegen die Mengen hingegen bei 100 bis 130 mm, örtlich noch höher. Bei der Sonnenscheindauer haben der Norden und Osten mit 210 bis 240 Stunden die Nase vorn, die Ostsee kommt sogar auf 250 Sonnenstunden. In den Mittelgebirgen und am Alpenrand muss man sich hingegen mit 180 bis 200 Stunden zufrieden geben.

Frost und Hitze

Bis zu den Eisheiligen (11. bis 15.5.) kann es nach Kaltlufteinbrüchen in klaren Nächten vereinzelt noch zu Frost kommen. In Oberstdorf im Allgäu wurden im Mai sogar schon -11 Grad gemessen, und selbst im selten sehr kalten Hamburg liegt der Mai-Kälterekord bei -5 Grad. Andererseits können von Süden schon hochsommerlich warme Luftmassen einfließen. Mit diesen sind unterstützt durch den hohen Sonnenstand schon heiße Tage mit 30 Grad oder mehr möglich. So liegt der Monatsrekord selbst in Kiel bei 33 Grad, in Berlin und Frankfurt am Main sogar bei 35 Grad.

Gewittersaison

Im Mai kommt die Gewittersaison in Fahrt, so sind in dieser Jahreszeit  markante Gewitterlagen mit Hagel, Starkregen und Sturmböen nicht ungewöhnlich. Ebenso kann es zu Hochwasserlagen kommen, da die nun warme Luft große Mengen an Feuchtigkeit aufnehmen kann. Somit können etwa bei „Vb-Wetterlagen“ regional sehr große Regenmengen fallen. Beispiele dafür sind das große Hochwasser Ende Mai / Anfang Juni 2013 oder das Pfingsthochwasser 1999. Nassschneefall mit Schneebruchgefahr stellt nun hingegen selbst in den Mittelgebirgen und am Alpenrand die Ausnahme dar, kann aber vereinzelt noch vorkommen.

Mittelwerte im Mai

durchschnittl. Max-Temp. in °C durchschnittl. Min-Temp. in °C Regenmenge in mm Regentage (mind. 0,1 mm)
Berlin 18,9 9,0 54 8,9
Hamburg 17,5 7,4 54 9,6
München 18,0 7,2 93 11,6
Köln 19,0 7,7 72 10,4
Frankfurt 20,0 9,1 63 9,7

Die Gewittersaison 2019 steht in den Startlöchern

In Kärnten und in der Steiermark gibt es Schauer und Gewitter

Grundsätzlich treten Gewitter in Mitteleuropa im gesamten Jahr auf, im Winter sind diese aber relativ selten: Meist handelt es sich um Graupel- oder Schneegewitter unter dem Einfluss von Höhenkaltluft oder um sehr schnell ziehende Gewitter an den Kaltfronten von markanten Tiefdruckentwicklungen. Die eigentliche Gewittersaison in Deutschland beginnt aber im Mittel im April und endet im September. Dies hängt in erster Linie mit dem Sonnenstand zusammen, so beginnt die Saison je nach Großwetterlage ein paar Wochen nach dem Frühlingsäquinoktium und endet ein paar Wochen vor dem Herbstäquinoktium.

Hochsaison ab Mai

Der Höhepunkt der Gewittersaison mit zahlreichen und teils starken Gewitterlagen geht von Anfang Mai bis Mitte August. Bereits im ersten Teil des Saison bis etwa Mitte Juni kommt es immer wieder zu ausgeprägten Gewitterlagen, da in dieser Zeit das Westwindband bzw. der Höhenwind noch relativ stark ausgeprägt sind. So kam es etwa vom 5. bis 12. Mai 2015 oder am 9.6.2014 mehrmals zu Unwettern in Deutschland. Im Hochsommer steht zwar noch mehr Energie zur Verfügung, dafür ist der Wind in der Höhe oft nur schwach ausgeprägt. Letzteres spielt für langlebige Gewittersysteme eine entscheidende Rolle.

Lokale Gewitter im Westen

Deutschland liegt derzeit am Rande von schwach ausgeprägten Höhentiefs über West- und Südeuropa. Mit einer südöstlichen Strömung gelangen dabei feuchte Luftmassen in die Südwesthälfte des Landes. Hier ziehen am Montag einige Wolken durch und im Laufe des Nachmittags und Abends entstehen besonders vom Sauerland bis zum Hunsrück ein paar kräftige Schauer und vereinzelt auch Gewitter. Teils gewittrige Schauer sind allerdings auch im östlichen Mittelgebirgsraum vom Böhmerwald bis zum Erzgebirge möglich.

Die Atmosphäre ist labil geschichtet
Vertikalprofil der Atmosphäre am Montagnachmittag in Aachen. © ECMWF / UBIMET

Wie man am obigen Modellprofil der Atmosphäre am Montagnachmittag sehen kann, können die gewittrigen Schauer bis etwa 500, vereinzelt  auch 400 hPa in die Höhe wachsen, dies entspricht einer Seehöhe von etwa 5500 bis 7000 m. Im Sommer wird dann manchmal sogar die doppelte Höhe erreicht. Bereits am Sonntag gab es in Belgien kräftige Gewitter mit Hagel, im Verglich dazu ist die Hagelgefahr am heutigen Montag aber gering, da die Luftschichtung etwas stabiler ist.

Kühle Luft im Anmarsch

Auch am Dienstag sind besonders in einem Streifen von der Eifel über Rheinland-Pfalz bis nach Bayern lokale Schauer oder Gewitter zu erwarten, aus Norden lenkt ein Skandinavienhoch aber trockene und kühle Luftmassen ins Land, somit wird die feuchte Luft allmählich nach Südwesten abgedrängt. Die Gewitterneigung lässt somit in der zweiten Wochenhälfte vorerst wieder nach und ausgehend vom Norden nimmt stattdessen die Frostgefahr zu.

Titelbild © pixabay.com

Start der Gewittersaison 2019

Blitz und Gewitter

Grundsätzlich treten Gewitter in Mitteleuropa im gesamten Jahr auf, im Winter sind diese aber relativ selten: Meist handelt es sich um Graupel- oder Schneegewitter unter dem Einfluss von Höhenkaltluft oder um sehr schnell ziehende Gewitter an den Kaltfronten von markanten Tiefdruckentwicklungen. Die eigentliche Gewittersaison im Alpenraum beginnt aber im Mittel im April und endet im September. Dies hängt in erster Linie mit dem Sonnenstand zusammen, so beginnt die Saison je nach Großwetterlage ein paar Wochen nach dem Frühlingsäquinoktium und endet ein paar Wochen vor dem Herbstäquinoktium, wenn die Tage länger als etwa 13 Stunden dauern.

Höhepunkt

Der Höhepunkt der Gewittersaison mit zahlreichen und teils starken Gewitterlagen geht von Anfang Mai bis Mitte August. Die ersten starken Gewitterlagen können bereits kurz nach Saisonbeginn auftreten, da in dieser Zeit das Westwindband bzw. der Höhenwind meist noch stark ausgeprägt sind. Im Hochsommer steht zwar noch mehr Energie zur Verfügung, dafür ist der Wind in der Höhe aber oft nur schwach ausgeprägt. Letzteres spielt für langlebige Gewittersysteme eine entscheidende Rolle. Im vergangenen Jahr etwa gab es in Wien das blitzreichste Gewitter der Saison bereits am 2. Mai. Im Durchschnitt gibt es die meisten Blitze allerdings im Juli, zudem ist die Gefahr von großem Hagel in dieser Jahreszeit erhöht.

Die meisten Gewittertage gibt es im Bergland
Gewitterklimatologie anhand von METAR. © Kaltenböck (2000) via Dorau (2006)

Hierzulande geht die Saison im südöstlichen Berg- und Hügelland am schnellsten los, während in den Alpen wie etwa in Innsbruck die schneebedeckten Berge für eine Verzögerung bis in die zweite Maihälfte hinein sorgen.

Lokale Gewitter am Montag

Österreich liegt derzeit am Rande von schwach ausgeprägten Höhentiefs über West- und Südeuropa. Mit einer südöstlichen Strömung gelangen dabei feuchte Luftmassen ins Land. Am Montag überwiegen im Süden und Westen die Wolken und zeitweise fällt Regen, zeitweiligen Sonnenschein gibt es dagegen vom Wald- und Weinviertel bis zur Süd- und Oststeiermark. Besonders im östlichen Berg- und Hügelland entstehen im Laufe des Nachmittags ein paar kräftige Schauer und vereinzelt auch Gewitter.

Die Vorwarnungen vor Gewitter in der Steiermark sowie im Mühlviertel
In den gelb eingefärbten Regionen sind vereinzelte Gewitter möglich. © www.uwz.at

Die größte Wahrscheinlichkeit dafür gibt es in den Lavanttaler Alpen, im Grazer Bergland sowie in höheren Lagen des Mühl- und Waldviertels.

Die Schichtung der Atmosphäre wird leicht labil
Vertikalprofil der Atmosphäre am Montagnachmittag. © UBIMET RACE

Wie man am obigen Modellprofil der Atmosphäre am Montagnachmittag sehen kann, können die gewittrigen Schauer mitunter bis etwa 400 hPa in die Höhe wachsen, dies entspricht einer Seehöhe von etwa 7000 m. Im Sommer wird dann teils sogar die doppelte Höhe erreicht. Neben Platzregen kann es dabei vereinzelt auch zu kleinkörnigem Hagel kommen.

Abkühlung in Sicht

Auch am Dienstag sind im südlichen Bergland einzelne gewittrige Schauer möglich, in der zweiten Wochenhälfte lenkt ein umfangreiches Hoch über Skandinavien aber kühle Luftmassen ins Land. Die Gewitterneigung lässt somit wieder nach und wird erst kommende Woche wieder zum Thema.

Titelbild © Adobe Stock

Hanami – Das japanische Kirschblütenfest

Kirschblüte

Mit Beginn der Kirschblüte (Sakura) wird in Japan alljährlich der Frühling begrüßt. Je nach Region und Witterung ist dies dort zwischen Ende März und Anfang Mai der Fall. Während dieser Zeit treffen sich Einheimische wie auch Touristen in Scharen unter den weiß und rosa blühenden Bäumen, um gemeinsam das Kirschblütenfest zu feiern. Genau genommen wird dabei Hanami betrieben: Es handelt sich um die über 1000 Jahre alte Tradition, bei einem Picknick die Blüten anzuschauen und deren Schönheit zu bewundern.

Kirschblüte in Tokio

Der zeitliche und regionale Verlauf der im Schnitt etwa zehn Tage andauernden Kirschblüte lässt sich dabei nicht nur vor Ort, sondern auch im japanischen Fernsehen verfolgen. Heute hat die Kirschblüte in Tokio offiziell begonnen, das sind etwa 5 Tage früher als im langjährigen Mittel.


Wortursprung und Symbolik

Der in Japan allgegenwärtige Begriff „Hanami“ bedeutet in erster Linie ,,Blumen bzw. Blüten betrachten“, bezieht sich dabei aber immer auf die Blüten der japanischen Zierkirsche. Da diese nur sehr kurz blüht und die Blütenreste bald zu Boden rieseln, sind sie ein passendes Symbol für die japanische Ästhetik und für die Vergänglichkeit des Schönen.

Hanami in Mitteleuropa

Auch bei uns wird in vielen Gemeinden und Städten die Blüte der japanischen Zierkirsche und mit ihr der Frühlingsanfang gefeiert. Eines der ältesten und größten europäischen Hanami-Feste findet seit 1968 in Hamburg statt. Krönender Abschluss ist hierbei ein prachtvolles Feuerwerk, das von mehreren zehntausend Menschen an den Außenufern der Alster bestaunt wird.

Frühjahr: Nassschneelawinen im Bergland

Lawinen

Im Frühjahr treten aufgrund der fortschreitenden Durchfeuchtung der Schneedecke in mittleren Höhenlagen kaum noch Staub- oder trockene Lockerschneelawinen, sondern vermehrt Nassschneelawinen auf. Diese können sowohl als Schneebrett- als auch als Lockerschneelawine losbrechen. Anbei ein aktuelles Video von der Arzler Alm an der Nordkette oberhalb von Innsbruck.

Durchfeuchtung

Der Grund für das Auftreten von Nassschneelawinen liegt im flüssigen Wasser, welches die Stabilität der Schneedecke markant schwächt. Kommt der Wassereintritt sogar bis zum Boden voran, können sich auch Grundlawinen lösen. Diese reißen auf ihrem Weg mitunter auch große Gesteinsbrocken und Erdmaterial mit. Eine besondere Form der Grundlawinen sind Gleitschneelawinen, welche vor ihrem Abgang oft die charakteristischen Schneemäuler bzw. Fischmäuler in der Schneedecke hervorrufen.

Tourenplanung

Tourengeher müssen in dieser Jahreszeit immer früher starten, da mit zunehmender Sonneneinstrahlung die Schneedecke im Tagesverlauf an Stabilität verliert. Weiters ist allerdings auch die Witterung in der Nacht entscheidend: Wenn der Himmel wolkenlos ist, dann friert der Schnee und ist tagsüber länger stabil. Wenn die Nacht hingegen bewölkt verläuft, sind die Bedingungen bereits am Vormittag kritisch.

Titelbild: Kecko on Visual Hunt / CC BY

Halos: Faszinierende optische Erscheinungen

Halos: Faszinierende optische Erscheinungen

Das Wort ‚Halo‘ kommt aus dem Griechischen und bedeutet soviel wie Rundung, grob übersetzt auch Ring. Diese optische Erscheinung entsteht durch die mehrfache Brechung und Reflexion des einfallenden Lichts  an Eiskristallen.

Sonne und Mond

In Mitteleuropa zeigen sich Halos vor allem in Zusammenspiel mit Cirruswolken in größeren Höhen von etwa 10 km, im Winter treten sie bei Polarschnee, Eisnebel oder in der Nähe von Schneekanonen aber manchmal auch auf Augenhöhe auf: Wenn Lichtstrahlen winzige Eiskristalle durchqueren, wird das Licht mehrfach gespiegelt und gebrochen. Die Sonne ist aber nicht die einzige Lichtquelle: Auch bei hellem Mondschein kann es zu Haloerscheinungen kommen.

Halo rund um den Mond
Ein Mondhalo. © www.foto-webcam.eu

Schlechtwetterbot?

Wenn sich ein Halo in einem milchigen, dünnen Schleier aus hochliegenden Wolken zeigt, dann droht etwa einen Tag später schlechtes Wetter: Ausgedehnte Cirruswolken kündigen nämlich häufig den Durchzug einer Warmfront an. Dies ist aber nur bei zunehmend dichten und verbreitet auftretenden Schleierwolken der Fall, da Cirruswolken durchaus auch während einer stabilen Wetterlage durchziehen können.

Halo als Schlechtwetterbot
Ein Halo als Schlechtwetterbot.

Halo ist nicht gleich Halo

Aufgrund der vielfältigen Formen der Eiskristalle gibt es rund 50 Haloarten. Je nach Form und Größe sowie Ausrichtung der Kristalle kann man sowohl Ringe, Säulen, Kreise oder Flecken beobachten. Eine Übersicht findet man hier: Haloarten.

Halo und Schneekristalle
Verschiedene Haloerscheinungen an Schneekristallen. © wwww.foto-webcam.eu

Nebensonnen und Zirkumzenitalbogen

Besonders häufig treten Nebensonnen auf, auch Parhelia genannt. Man erkennt sie an hellen, oft auch farbigen länglichen Aufhellungen rechts und/oder links von der Sonne, die an der Innenseite rötlich sind. Auch der Zirkumzenitalbogen gehört zu den häufiger auftretenden Haloerscheinungen. Er tritt als farbenprächtiger Halbkreis in Erscheinung und ist nach unten hin gebogen. Man findet ihn oberhalb der Sonne. Ein Zirkumzenitalbogen kann nur bis zu einer Sonnenhöhe von ungefähr 32° entstehen, am besten ist er bei Sonnenhöhen zwischen 15° und 25° sichtbar.

Nebensonnen am Strand
Nebensonnen bzw. Parhelia.

Südstau in den Alpen: Regen und Schnee in extremen Mengen

Südstau bringt große Regenmengen in den Südalpen

Als Südstau werden Niederschläge südlich des Alpenhauptkamms bezeichnet, die durch das Hindernis Alpen ausgelöst oder verstärkt werden. Bei einer Südstaulage wird eine ohnehin schon recht feuchte Luftmasse durch die Alpen zum Aufsteigen gezwungen, dabei kühlt sie sich ab. Da Luft mit sinkender Temperatur weniger Wasser halten kann, kommt es zu Regen und Schneefall. Die Luft wird somit förmlich wie ein Schwamm ausgequetscht. Nördlich des Alpenhauptkamms stellt sich ein regelrechtes Kontrastprogramm ein, hier macht sich oft Föhn bemerkbar.

Regen und Schnee

In Österreich werden von Südstaulagen vor allem die Regionen von Osttirol über Kärnten bis in die südliche Steiermark beeinflusst. In diesem Gebiet wird die feuchte Mittelmeerluft an den Karawanken, den Karnischen Alpen bzw. am Alpenhauptkamm gehoben. So gibt es vor allem in Osttirol und Oberkärnten bei kräftigen Südstaulagen teils enorme Regen- oder Schneefälle. Stellenweise fallen dann über 100 Liter pro Quadratmeter innerhalb von nur 24 Stunden. In den vergangenen Tagen gab es etwa am Plöckenpass knapp über 600 Liter pro Quadratmeter in nur drei Tagen (siehe auch hier)! Sogar noch ergiebigere Mengen werden manchmal in den Alpen in Friaul verzeichnet, welche daher auch zu den nassesten Regionen Europas zählen. Im Winter kann es zudem trotz der eigentlich recht milden Luftmasse sogar in manchen Tallagen bis in tiefe Lagen heftigen Schneefall geben. Grund hierfür ist die Schmelzwärme des Schnees, die der Umgebung entzogen wird.

Föhn im Norden

An der Alpennordseite und im östlichen Flachland gibt es bei einer Südstaulage nur selten nennenswerten Niederschlag. Markant ist hier allerdings der Wind, der besonders in prädestinierten Tallagen wie etwa dem Großraum Innsbruck oft stürmisch aus Süd weht. Bei besonders kräftigen Südströmungen kann der Niederschlag allerdings über den Alpenhauptkamm hinweg greifen, so kann es in Innsbruck und Salzburg durchaus Föhn und Niederschlag gleichzeitig geben. In solchen Fällen spricht man von Dimmerföhn. Dies war auch am letzten Montag zeitweise der Fall, als in den Nordalpen örtlich Orkanböen verzeichnet wurden.

Die Stratosphäre und der Polarwirbel

Die Stratosphäre und der Polarwirbel

Die Atmosphäre der Erde ist die gas­förmige Hülle der Erdoberfläche und erstreckt sich vom Boden bis etwa 10.000 km Höhe. Der Druck, die Temperatur sowie der Gehalt an Gasen sind allerdings sehr variabel, somit kann man die Erdatmosphäre in mehrere Schichten unterteilen:

  • Troposphäre: vom Boden bis zur Tropopause in ca. 10-15 km Höhe
  • Stratosphäre: von der Tropopause bis zur Stratopause in ca. 50 km Höhe
  • Mesosphäre: von der Stratopause bis zur Mesopause in ca. 85 km Höhe
  • Thermosphäre: von der Mesopause bis in ca. 500 km Höhe
  • Exosphäre: von 500 bis ca 10.000 km Höhe

In der Troposphäre sind etwa 90 Prozent der Luft sowie beinahe der gesamte Wasserdampf enthalten. Hier spielt sich das Wetter ab und die Temperatur nimmt im Mittel um etwa 6,5 Grad pro Kilometer Höhe ab. Ab einer Höhe von etwa 7 km (Polargebiete) bzw. 17 km (Tropen) geht die Temperatur aber nicht mehr weiter zurück sondern beginnt allmählich wieder anzusteigen. Hier beginnt die Stratosphäre.

Beständige Inversion

Meteorologen bezeichnen so eine Umkehr der Temperaturschichtung als Inversion. Man muss allerdings nicht bis in die Stratosphäre aufsteigen, um eine Temperaturumkehr zu erleben, denn auch innerhalb der Troposphäre können beispielsweise winterliche Kaltluftseen für Inversionen sorgen. Die Luftschichtung ist dann stabil und ein Luftaustausch in vertikaler Richtung findet nicht statt. Die Stratosphäre stellt allerdings eine beständige Grenze für aufsteigende Luftmassen dar. Daher gelangen Wolken und Wasserdampf in der Regel nicht in die Stratosphäre, von einem eigentlichen Wettergeschehen kann in diesen Höhen nicht mehr die Rede sein. Aus einem Verkehrsflugzeug, das im Bereich der Tropopause fliegt, kann man diese Sperre für jegliche Wolken an der nach oben abrupt dunkler werdenden Himmelsfarbe erkennen. Der Temperaturanstieg oberhalb der Tropopause ist auf die Absorption der UV-Strahlung durch das Ozon in gut 50 km Höhe zurückzuführen: Hier erwärmt sich die Luft von etwa –60 Grad bis auf knapp unter 0 Grad.

Der Polarwirbel

Der Polarwirbel ist ein großräumiges Höhentief über der Arktis (bzw. Antarktis), das sich im Winter von der mittleren und oberen Troposphäre über die gesamte Stratosphäre erstreckt. Er ist gefüllt mit sehr kalter Luft, die in der Stratosphäre Werte um -80 Grad erreichen kann. Der Polarwirbel ist normalerweise relativ rund um den Pol angeordnet und sein Einfluss auf das Wetter in den mittleren Breiten hält sich in Grenzen.

Der Polarwribel mäandriert
Beispiele für einen ungestörten (links) und gespaltenen Polarwirbel (rechts). © NOAA

Stratosphärenerwärmung

Der Polarwirbel kann aber gestört oder gar gespalten werden, wie etwa im Fall einer sogenannten plötzlichen Stratosphärenerwärmung: In etwa 25 km Höhe gibt es dabei innerhalb weniger Tage einen Temperaturanstieg von mehr als 50 Grad! Die Spaltung des Polarwirbels kann sich im Laufe von zwei bis vier Wochen auch auf das Westwindband in der Troposphäre auswirken und dieses verlangsamen oder unterbrechen. Während in der Polarregion dann überdurchschnittliche Temperaturen verzeichnet werden, kommt es in mittleren Breiten zu markanten Kaltluftausbrüchen wie beispielsweise im Februar und März 2018. Auch heuer gab es Anfang Jänner eine plötzliche Stratosphärenerwärmung, deren Auswirkungen derzeit langsam auch die Troposphäre beeinflussen. Dementsprechend berechnen die Wettermodelle mittelfristig ein stark gestörtes Westwindband, weshalb die Chancen für markante Kaltlufteinbrüche in den mittleren Breiten erhöht sind. Im Osten der USA steht ein markanter Wintereinbruch bevor und auch in Europa ist am Monatsende ein weiterer Kaltlufteinbruch nicht ausgeschlossen.

Der Polarwirbel hat sich gespalten
Die Anomalie in der Stratosphäre verlagert sich langsam abwärts. © Z. D. Lawrence

Rand des Weltalls?

Vom „Edge of Space“ war anlässlich des Stratospärensprungs im Jahr 2012 die Rede. Tatsächlich liegen in 39 km Höhe schon über 99 % der atmosphärischen Masse unter einem. Rein räumlich gesehen ist die Lufthülle in dieser Höhe aber noch lange nicht zu Ende. Es folgen nach oben noch die Meso-, Thermo- und Exosphäre. Die Grenze zwischen den Stockwerken stellt jeweils wieder eine Umkehr im Temperaturverlauf dar. Besonders kalt ist es mit Temperaturen um -100 Grad in etwa 85 km Höhe im Bereich der Mesopause.

Erste Moor- und Buschbrände durch Trockenheit

Löschflugzeug im Anflug, San Sebastian, Spanien

In der vergangenen Woche erwärmte sich die Luft im Süden von Frankreich und angrenzenden Teilen Spaniens bereits auf sommerliche Werte. Bis zu 28 Grad zeigte das Thermometer bei Perpignan mit leichtem Föhn von den Pyrenäen her, aber auch am Atlantik von Bilbao bis nach Bordeaux wurden 25 Grad und mehr erreicht. Auf den Skipisten der Pyrenäen zeigte das Thermometer zwischen 10 und 20 Grad, da wurde es manchem Skihaserl bereits im Februar zu warm.

Temperaturen Mittwochnachmittag, 27.02.2019 im Umfeld der Pyrenäen @ UBIMET, Aemet, MeteoFrance
Temperaturen Mittwochnachmittag, 27.02.2019 im Umfeld der Pyrenäen @ UBIMET, Aemet, MeteoFrance

Aufgrund der Trockenheit kam es bereits zu Bränden von Italien bis hinauf nach England. Das nachfolgende Video stammt aus San Sebastian im Norden Spaniens und zeigt ein Löschflugzeug, welches zum Befüllen mit Wasser den strandnahen Bereich mit einer ruhigen Wasseroberfläche aufsucht. Hier gehört schon einiges an fliegerischem Können dazu.

 

 

 

Sonnenbrand trotz Kälte?

Sonniges Skivergnügen @ Ruth and Dave on Visual hunt / CC BY

Schutzschicht ist dünner

Ein entscheidender Faktor ist die Höhe. Die Erdatmosphäre schützt uns vor der energiereichen ultravioletten Strahlung. Verringert man die Schutzdicke der Atmosphäre, indem man sich in größere Höhen, z. B. auf Berge begibt, erhöht sich die Intensität der UV-Strahlung. Als Faustregel gilt: Die gesamte UV-Belastung steigt pro 1000 Höhenmeter um 15%.

Schneeflächen als Multiplikator

Ein weiterer Grund ist das große Reflexionsvermögen von Schnee, Albedo genannt. Reflektieren Grasflächen beispielsweise nur etwa 20% der Strahlung, steigt der Wert bei frischem Schnee auf 80 bis 90%. Bei altem und damit meist dunklerem Schnee sinkt der Wert zwar etwas, ist aber gegenüber schneelosen Flächen immer noch deutlich erhöht. Auf die Haut wirkt also nicht nur die Strahlung von „oben“ sondern auch noch die vom Boden her ein.

Niedriger Sonnenstand kann in die Irre führen

Als Ergebnis ist trotz des im Winter deutlich niedrigeren Sonnenstandes vor allem bei Wintersportaktivitäten dennoch ein ausreichender Sonnenschutz erforderlich, insbesondere wenn es etwa in die Alpen geht. Ist dies für die Augen meist die Skibrille, empfiehlt sich für die Haut eine Sonnencreme, die zusätzlich noch einen Kälteschutz liefert.

 

Titelbild: Sonniges Skivergnügen @ Ruth and Dave on Visual hunt / CC BY

Vor 20 Jahren: Die Lawinenkatastrophe von Galtür

Lawinenunglück Galtür @ https://www.servus.com

Wie auch im Januar diesen Jahres gab es Anfang 1999 eine recht festgefahrene Großwetterlage, welche für wiederkehrende ergiebige Schneefälle in den Alpen sorgte. Ein kräftiges Hoch lag über dem Ostatlantik und Tiefdruckgebiete wurden auf dessen Nordseite herum nach Skandinavien geführt. Insbesondere von Ende Januar 1999 weg stauten sich so immer wieder von Nordwesten her feuchte und kalte Luftmassen an den Alpen und hier speziell in der Arlbergregion. Über einen Monat hinweg schneite es ohne große Unterbrechungen, wobei es drei markante Staulagen gab. In Summe fielen in dieser Zeit im Raum Galtür bis zum 23.02. etwa 4 Meter Neuschnee, was durchaus vergleichbar ist mit den Schneemassen des heurigen Winters in den Bayerischen Alpen.

Großräumige Wetterlage am 17.02.1999, repräsentativ für die Wochen vor dem Lawinenunglück @ http://www.wetterzentrale.de
Großräumige Wetterlage am 17.02.1999, repräsentativ für die Wochen vor dem Lawinenunglück @ http://www.wetterzentrale.de

Die entscheidende Lawine ging damals vom Grieskopf ab, der direkt nordwestlich an Galtür anschließend etwas mehr als 2700 m hoch aufragt. Auf der von Galtür abgewandten Seite (im Bild als Luv-Seite markiert) erstreckt sich ein nur leicht abfallendes Hochplateau, hier konnte der beständige Nordwestwind große Mengen an Schnee aufnehmen und am Kamm des Grieskopfes auf der windabgewandten Seite (Lee-Seite) ablagern. Enorme Mengen an Triebschnee konnten sich hier mit der Zeit sammeln.

Schematische Darstellung der Bedingungen, die zum Lawinenunglück von Galtür geführt haben @ UBIMET, Google
Schematische Darstellung der Bedingungen, die zum Lawinenunglück von Galtür geführt haben @ UBIMET, Google

Dies ist eigentlich recht ungewöhnlich, da sich bei vergleichbarer Schneeakkumulation Lawinen meist rasch spontan lösen und damit keine solch enorme Größe erreichen können wie 1999. Doch in diesem Fall war die Schneedecke sehr stabil aufgebaut. Nach jeder der angesprochenen Staulagen konnte sich der Schnee durch Temperaturschwankungen setzen, es gab keine ausgeprägten Schwachschichten. Lange Zeit wurde der Kollaps der Triebschneeablagerungen hinausgezögert, am 23. Februar 1999 gab die Verbindung zum Altschnee schließlich nach.

 

Titelbild: Lawinenunglück Galtür @ https://www.servus.com

Vor 20 Jahren: Die Lawinenkatastrophe von Galtür

Lawinenunglück Galtür @ https://www.servus.com

Wie auch im aktuellen Winter gab es Anfang 1999 eine recht festgefahrene Großwetterlage, welche für wiederkehrende ergiebige Schneefälle in den Alpen sorgte. Ein kräftiges Hoch lag über dem Ostatlantik und Tiefdruckgebiete wurden auf dessen Nordseite herum nach Skandinavien geführt. Insbesondere von Ende Jänner weg stauten sich so immer wieder von Nordwesten her feuchte und kalte Luftmassen an den Alpen und hier speziell in der Arlbergregion. Über einen Monat hinweg schneite es ohne große Unterbrechungen, wobei es drei markante Staulagen gab. In Summe fielen in dieser Zeit im Raum Galtür bis zum 23.02. etwa 4 Meter Neuschnee, was durchaus vergleichbar ist mit den Schneemassen des heurigen Winters an der Alpennordseite.

Großräumige Wetterlage am 17.02.1999, repräsentativ für die Wochen vor dem Lawinenunglück @ http://www.wetterzentrale.de
Großräumige Wetterlage am 17.02.1999, repräsentativ für die Wochen vor dem Lawinenunglück @ http://www.wetterzentrale.de

Die entscheidende Lawine ging damals vom Grieskopf ab, der direkt nordwestlich an Galtür anschließend etwas mehr als 2700 m hoch aufragt. Auf der von Galtür abgewandten Seite (im Bild als Luv-Seite markiert) erstreckt sich ein nur leicht abfallendes Hochplateau, hier konnte der beständige Nordwestwind große Mengen an Schnee aufnehmen und am Kamm des Grieskopfes auf der windabgewandten Seite (Lee-Seite) ablagern. Enorme Mengen an Triebschnee konnten sich hier mit der Zeit sammeln.

Schematische Darstellung der Bedingungen, die zum Lawinenunglück von Galtür geführt haben @ UBIMET, Google
Schematische Darstellung der Bedingungen, die zum Lawinenunglück von Galtür geführt haben @ UBIMET, Google

Dies ist eigentlich recht ungewöhnlich, da sich bei vergleichbarer Schneeakkumulation Lawinen meist rasch spontan lösen und damit keine solch enorme Größe erreichen können wie 1999. Doch in diesem Fall war die Schneedecke sehr stabil aufgebaut. Nach jeder der angesprochenen Staulagen konnte sich der Schnee durch Temperaturschwankungen setzen, es gab keine ausgeprägten Schwachschichten. Lange Zeit wurde der Kollaps der Triebschneeablagerungen hinausgezögert, am 23. Februar 1999 gab die Verbindung zum Altschnee schließlich nach.

 

Titelbild: Lawinenunglück Galtür @ https://www.servus.com

Die Auswirkungen von Temperatur und Luftfeuchtigkeit auf den Schneeverlust

Schnee und Sonne im Winter

Der Abbau einer Schneedecke kann je nach Luftmasse auf unterschiedliche Art ablaufen. In diesen Tagen gibt es tagsüber zwar vielerorts zweistellige Plusgrade und die Nullgradgrenze liegt bei knapp 3.000 m, dennoch gibt es derzeit nahezu nirgends Tauwetter.

Ort Höchstwerte am Sa. bzw. So. Schneeverlust von Sa. bis Mo.
Schröcken (Vorarlberg, 1244 m) 12 Grad / 12 Grad -6 cm
Reutte (Tirol, 842 m) 14 Grad / 13 Grad -2 cm
Abtenau (Salzburg, 709 m) 8 Grad / 9 Grad -2 cm
Windischgarsten (Oberösterreich, 600 m) 10 Grad / 10 Grad -1 cm
Oberstdorf (Bayern, 806 m) 13 Grad / 10 Grad -3 cm
Adelboden (Schweiz, 1327 m) 12 Grad / 11 Grad -4 cm
St. Gallen (Schweiz, 775 m) 11 Grad / 11 Grad -3 cm

Der Grund für den geringen Schneeverlust liegt beim Zusammenspiel von Temperatur und Luftfeuchtigkeit. Ein kombiniertes Maß dafür stellt die Feuchttemperatur dar: Es handelt sich um die Gleichgewichtstemperatur, die sich infolge der Verdunstung an einer feuchten Oberfläche einstellt. Näherungsweise kann man diese Temperatur nach dem Duschen auf der Haut spüren, wenn man nass durch einen trockenen Raum läuft. Ist die Luft mit Wasserdampf gesättigt, so findet keine Verdunstung statt und die Feuchttemperatur entspricht der Lufttemperatur. Weiters stellt der Taupunkt jene Temperatur dar, auf die man die Luft abkühlen muss, damit die Luftfeuchtigkeit 100% erreicht.

Sublimation

Wenn die Temperatur über 0 Grad liegt und die Luftfeuchtigkeit sehr gering ist, liegen sowohl Taupunkt als auch Feuchttemperatur unter 0 Grad. Die Wassermoleküle an der Schneeoberfläche gehen in diesem Fall direkt vom festen in den gasförmigen Zustand über. Aus Schnee wird also unsichtbarer Wasserdampf. Dieser Prozess ist in diesen Tagen vor allem in mittleren Höhenlagen in Gange, wo die Luft ausgesprochen trocken ist.

Schmelzen

Wenn die Luftmassen noch etwas wärmer wird, dann steigt nach der Temperatur auch die Feuchttemperatur auf positive Werte. Bei geringer Luftfeuchtigkeit kann der Taupunkt aber weiterhin unter null Grad liegen. In diesem Fall wird der Schnee teils in den gasförmigen und teils in den flüssigen Zustand übergehen. Diesen Prozess nennt man in der Meteorologie Schmelzen und man kann ihn in diesen Tagen vor allem in größeren Tallagen bei zweistelligen Temperaturen und nicht vergleichbar trockenen Luft wie etwa auf den Bergen beobachten.

Tauen

Im Falle von warmer und feuchter Luft, liegen neben der Temperatur sowohl die Feuchttemperatur als auch der Taupunkt über 0 Grad. In diesem Fall geht die gesamte Energie in die Umwandlung von der festen in die flüssige Phase. Dieser Prozess kostet wesentlich weniger Energie als die Sublimation und ist somit besonders effektiv. Wenn dazu Wind weht, rinnt der Schnee regelrecht davon. Dies ist aktuell in den schneebedeckten Regionen aber nicht der Fall.

Schlechtes Wetter bei der Ski-WM: Wetterloch Åre?

Aare in Schweden im Winter

Åre ist ein Ort in der schwedischen Provinz Jämtlands län und liegt etwa 97 Kilometer nordwestlich von Östersun sowie 350 km südlich des Polarkreises. Unmittelbar auf den Bergen nördlich des Ortes liegt eines der bekanntesten Skigebiete Skandinaviens mit knapp 100 Pistenkilometern.

Die geographische Lage von Aare
Die geographische Lage von Åre in Schweden. © google.com

Åre liegt in einem von West nach Ost bis Südost ausgerichteten Tal auf einer Seehöhe von etwa 400 m. Das Skigebiet liegt unmittelbar nördlich der Ortes, somit liegen die meisten Pisten auf Südhängen. Der höchste Punkt oberhalb des Orts ist mit 1.420 m der Gipfel vom Åreskutan. Am Talboden erstreckt sich der Åresjön, ein relativ flacher See der etwa von Ende November bis Anfangs Mai zugefroren ist.

Die Topographie rund um Aare
Die Topographie rund um Åre. © google.com

Klimamittel

Die mittlere Jahrestemperatur in Duved, einem Ort etwa 8 km westlich von Åre, liegt bei +1,3 Grad und im Mittel fallen pro Jahr 660 Liter pro Quadratmeter Regen bzw. Schnee. Der nasseste Monat des Jahres ist mit 89 mm der Juli, während die Monate von Februar bis Mai vergleichsweise trocken ausfallen.

Mittlerer Niederschlag (1961-1990, SMHI) in Duved:
Jan Feb Mar Apr Mai Jun Jul Aug Sep Okt Nov Dez
mm 48 38 42 35 36 56 89 70 78 59 47 62
°C -9,9 -8,4 -4,5 0,3 6,3 10,9 12,3 11,1 7,0 2,6 -3,9 -7,7

Im Februar fallen im Mittel 38 mm Regen bzw. Schnee, das ist deutlich weniger als in den Nordalpen: Der mittlere Monatsniederschlag in Seefeld in Tirol liegt im Februar bei 81 mm, im Arlberggebiet sogar bei über 100 mm. Åre liegt bei Süd- bis Südwestlagen im Lee des Südskandinavischen Gebirges, bei West- bis Nordwestlagen ist das Skigebiet hingegen wetteranfällig, da die Berge in diesem Gebirgsabschnitt nicht besonders hoch sind und im Westen wenig Schutz bieten. Der Wind weht aufgrund der Ausrichtung des Tals vorwiegend aus West bis Nordwest und nur manchmal auch aus Ost-Südost. Stürmische Böen treten vor allem von November bis März auf und kommen nahezu ausschließlich aus westlicher Richtung.

Aktuelle Wetterlage

Skandinavien liegt seit Wochenbeginn unter Tiefdruckeinfluss. Im Laufe der ersten Wochenhälfte baute sich über Mitteleuropa zudem ein mächtiges Hochdruckgebiet auf, welches flankiert von einem Tief über dem östlichen Mittelmeer und einem weiteren Tief über dem Atlantik zu einer blockierten Wetterlage namens „Omega-Lage“geführt hat. Das Westwindband wird dabei von Mitteleuropa ferngehalten und atlantische Tiefausläufer ziehen in dichter Abfolge am Nordrand des Hochs über Skandinavien hinweg. Das Hoch, welches in Mitteleuropa für sonniges und mildes Wetter sorgt, spielt somit auch eine entscheidende Rolle für das wechselhafte Wetter in Skandinavien.

Das Hoch über Mitteleruopa lenkt Tiefdruckgebiete nach Skandinavien
Druckverteilung in etwa 5.500 m Höhe am Samstag. © GFS / UBIMET

Fazit

Åre ist aufgrund seiner nördlichen geographischen Lage abseits der Norwegischen See in Mittel relativ kalt, so liegt die durchschnittliche Monatstemperatur in Februar bei -8,4 Grad. Zum Vergleich beträgt die mittlere Februartemperatur in St. Anton am Arlberg -3,7 Grad. Solche Temperaturen stellen aber normalerweise kein Problem dar und sorgen vielmehr für eisige und somit beständige Pistenverhältnisse. Problematischer ist die Windanfälligkeit bei West- bis Nordwestwetterlagen, da der Wind im Tal kanalisiert wird. Heuer hatten die Veranstalter allerdings auch etwas Pech, so sorgt derzeit die festgefahrene Wetterlage vor allem in Skandinavien für sehr wechselhafte Bedingungen. Dies kann aber durchaus auch in den Alpen passieren, so gab es etwa in der ersten Jännerdekade Nordstaulagen am laufenden Band. Damals mussten etwa die Abfahrt und der Super-G der Damen am 12. und 13. Jänner in St. Anton abgesagt werden. Bei Bewerben im Gebirge müssen Veranstalter stets auf einen gnädigen Petrus hoffen.

Windiges Wien – eine Winterstatistik

Wien-Donauplatte @ Photo on VisualHunt

Die Erklärung für die windigen Wochen in Wien findet sich in der festgefahrenen Großwetterlage: Über den Britischen Inseln und dem östlichen Atlantik liegt ein kräftiges Hochdruckgebiet. Dieses lenkt alle Tiefs im Uhrzeigersinn um seinen Kern herum. Kommt nun also ein Tief vom Atlantik und möchte mit milder und feuchter Luft nach Mitteleuropa ziehen, wird es vom Hoch daran gehindert. Das Tief muss also den „Umweg“ an der Nordflanke des Hochs nehmen und zieht dann von Skandinavien nach Polen und Weißrussland. In den Nordalpen hatte dies die andauernden Schneefälle zur Folge. In Wien hingegen hat dies zur Konsequenz, dass seitdem mit jedem dieser Tiefs der West- bis Nordwestwind stürmisch auffrischte.

Das ganz große Sturmereignis war zwar bisher nicht dabei, Böen über 100 km/h zum Beispiel wurden in diesen Winter in Wien noch nicht erreicht (zuletzt im Oktober 2018). Markant in jedem Fall ist die Anzahl der stürmischen Tage in der Bundeshauptstadt. Hier ein kleiner Vergleich des Jänners bislang mit den Jännermonaten der vergangenen Jahre:

Monat
Tage mit stürmischen Böen
(> 62 km/h)
max. Windböe
Jänner 2019 (01. bis 15.) 11 94 km/h
Jänner 2018 8 86 km/h
Jänner 2017 6 104 km/h (Orkan Axel)
Jänner 2016 5 94 km/h
Jänner 2015 9 97 km/h
Jänner 2014 1 65 km/h
Jänner 2013 5 94 km/h
Jänner 2012 10 83 km/h
Jänner 2011 4 72 km/h
Jänner 2010 2 76 km/h
Jänner 2009 1 83 km/h
Jänner 2008 7 104 km/h (Orkan Paula)
Jänner 2007 18 122 km/h (Orkan Kyrill)

 

Wir erleben also definitiv den windigsten Jänner seit 12 Jahren, doch selbst die 18 Tage mit stürmischen Böen anno 2007 könnten theoretisch heuer noch übertroffen werden. Es ist ja erst bei Jännerhalbzeit. Was auch auffällt: Die Schwankungsbreite, ob ein Jänner nun besonders stürmisch ist oder doch eher ruhig, ist in den betrachteten 12 Jahren sehr hoch.

Wie viele Tage mit Sturm und Wind konnten in den letzten drei bis vier Monaten verzeichnet werden? Wie stark war die heftigste Sturmböe? Im Vergleich zu den Vorjahren: Wie viele stürmische Tage gab es im Vergleichszeitraum? Betrachten wir nun die vergangenen 3 Monate:

Monate
Tage mit stürmischen Böen
(> 62 km/h)
max. Windböe
NOV/DEZ/JÄN 2018/2019 (bis 15.01.19) 19 94 km/h
NOV/DEZ/JÄN 2017/2018 25 94 km/h
NOV/DEZ/JÄN 2016/2017 14 112 km/h
NOV/DEZ/JÄN 2015/2016 14 104 km/h
NOV/DEZ/JÄN 2014/2015 18 101 km/h
NOV/DEZ/JÄN 2013/2014 14 86 km/h
NOV/DEZ/JÄN 2012/2013 9 94 km/h
NOV/DEZ/JÄN 2011/2012 17 90 km/h
NOV/DEZ/JÄN 2010/2011 11 86 km/h
NOV/DEZ/JÄN 2009/2010 9 79 km/h
NOV/DEZ/JÄN 2008/2009 13 115 km/h
NOV/DEZ/JÄN 2007/2008 16 104 km/h
NOV/DEZ/JÄN 2006/2007 25
122 km/h

 

Über diesen etwas längeren Zeitraum relativiert sich alles ein wenig, ganz einfach weil diesen Winter bis Mitte Dezember nur wenige stürmische Tage dabei waren. Aber auch hier gilt: der Jänner hat ja noch zwei Wochen, in denen die Bilanz von bislang 19 stürmischen Tagen noch aufgefettet werden kann.

Betrachtet man  eine etwas größere Skala, Frage „Wird es in Wien immer windiger über die vergangenen Jahrzehnte?“ – Im Folgenden sieht man einen Vergleich der Klimamittelwerte gültig für die Station Wien-Hohe Warte:

Klimaperiode Tage pro Jahr mit kräftigem Wind (mittlere Windgeschwindigkeiten > 39 km/h) Tage pro Jahr mit stürmischem Wind (mittlere Windgeschwindigkeiten > 62 km/h)
1961-2000 34 3
1981-2010 43 7

 

Der Trend in Wien scheint also langsam in die Richtung „windiger“ zu gehen. Aber natürlich wird es auch in Zukunft neben stürmischen Wintermonaten sehr ruhige geben – wenn zum Beispiel ein kräftiges Hochdruckgebiet mit kalten Luftmassen vorherrschend sein sollte.

 

Titelbild: Wien-Donau-City @ Photo on VisualHunt

Warum frieren Gewässer immer von oben zu?

Zugefrorener See @ b_hanakam on VisualHunt / CC BY-NC-SA

Diese Umkehrung der Temperaturverteilung beruht auf der Dichteanomalie des Wassers. Üblicherweise nimmt die Dichte von Stoffen mit abnehmender Temperatur zu, weshalb sich beispielsweise die kühlste Luft bei einer ruhigen Hochdrucklage im Winter immer am Boden eines Tals ansammelt. Es gibt jedoch ein paar Stoffe, darunter Wasser, die ein gegenteiliges, anomales Verhalten zeigen. So rücken die Moleküle des Wassers bei einer Temperatur von 4 Grad besonders nah zusammen und erreichen die maximale Dichte. Bei Temperaturen unter 4 Grad nimmt die Dichte des Wassers wieder etwas ab.

Die 4-Grad-Marke

Durch die Dichteanomalie des Wassers kühlt ein stehender See im Laufe des Herbstes gänzlich auf 4 Grad ab, bevor sich das Wasser an der Oberfläche weiter in Richtung Gefrierpunkt abkühlen kann. Im Winter kommt es somit immer an der Oberfläche eines Gewässers zur Eisbildung, während am Seeboden eine 4 Grad „warme“ Schicht erhalten bleibt. Diese Eigenschaft des Wassers ist überlebenswichtig für die dortige Tier- und Pflanzenwelt.

Webcam Weisensee @ https://weissensee4.it-wms.com/
Webcam Weisensee @ https://weissensee4.it-wms.com/

Bisher nur wenige zugefrorene Seen, etwa in Kärnten

Bisher war es in diesem Winter noch nicht kalt genug für zugefrorene Seen, lediglich im Süden Österreichs hat es durch die frostigen Nächte für einzelne Seen gereicht. So ist etwa der vor allem bei Holländern beliebte Weissensee in Kärnten bereits seit dem 26. Dezember frei gegeben.

Die Freigabe einer Eisfläche erfolgt meist durch lokale Vereine. In der Regel wird aber nicht ein ganzer See freigegeben, sondern immer nur bestimmte, gekennzeichnete Bereiche. Wer sich auf das glatte Parkett bewegt, sollte sich der damit verbundenen Gefahren aber bewusst sein! In der Regel soll das Eis 15 bis 20 cm dick sein, um es gefahrlos betreten zu können.

Webcam Hörzendorfersee @ https://evw1.it-wms.com/current1.jpg
Webcam Hörzendorfersee @ https://evw1.it-wms.com/current1.jpg

Titelbild: Zugefrorener See @ b_hanakam on VisualHunt / CC BY-NC-SA

Lawinen – die weiße Gefahr

Lawinen die weiße Gefahr

Am häufigsten treten Lockerschnee- und Schneebrettlawinen auf. Erstere haben ihren Ursprung in einem einzelnen Punkt, sie nehmen beim Abgang immer mehr Schnee auf und wachsen daher rasch an. Zweitere kennzeichnen sich durch einen linienförmigen Abriss quer zum Hang aus, dabei rutscht eine ganze Schicht auf einer anderer Schneeschicht oder auf dem Grund ab. Wenn die gesamte Schneedecke am Boden abgleitet, spricht man auch von Gleitschneelawinen.

Eine kleine Lockerschneelawine. © Nikolas Zimmermann
Eine kleine Lockerschneelawine. © Nikolas Zimmermann

Nassschneelawinen lösen sich ebenfalls als Schneebrett oder als Lockerschneelawine. Sie treten  vor allem im Frühjahr an Südhängen auf. Hauptauslöser von Nassschneelawinen ist flüssiges Wasser in der Schneedecke, das die Bindung der Schichtgrenzen schwächt. Staublawinen treten dagegen nur bei markanten Lagen mit viel Neuschnee auf und sind somit vergleichsweise selten zu beobachten.

Eine Schneebrettlawine. © Nikolas Zimmermann
Schneebrettlawinen auf einer Schwachschicht im Schnee. © Nikolas Zimmermann

Hangneigung und Schneemenge

Grundsätzlich ist eine gewisse Masse an Schnee notwendig, die sich an einem Hang mit einer Neigung von etwa 25° oder mehr ansammelt. Je größer die Neigung, desto öfter ist mit Lawinenabgängen zu rechnen. Andererseits können sich gerade auf nur mäßig steilen Hängen besonders große Schneemengen ansammeln, weshalb hier besonders viele Unfälle passieren. Ist der Hang zudem nach Norden ausgerichtet und damit weniger der Sonneneinstrahlung ausgesetzt, kann sich eine Schneedecke schlechter stabilisieren und eine mögliche Gefahrenstelle bleibt länger bestehen.

Beispielbild eines Schneebretts @ https://pixabay.com/de/users/hans-2/
Eine Gleitschneelawine in steilem Gelände.

Schwachschichten

Fällt viel Neuschnee in kurzer Zeit, ist dieser mit einer vorhandenen, bereits gesetzten Schneedecke vorübergehend schlecht verbunden. Erst nach ein paar Tagen – je nach Höhe und Exposition – kann sich der Neuschnee setzen und mit dem Altschnee verbinden. Auch ohne Neuschnee können die verschiedenen Schneeschichten allerdings große Unterschiede in der Beschaffenheit aufweisen, beispielsweise kann es zu einem Festigkeitsverlust in einer Schneeschicht durch die sogenannte aufbauende Schneeumwandlung kommen. Zudem kann es auch eingelagerte Schwachschichten geben wie eingeschneiter Oberflächenreif. Manchmal reicht somit bereits ein geringes Zusatzgewicht wie beispielsweise ein Skifahrer aus, um eine Schneeschicht ins Rutschen zu bringen.

Staublawinen treten nur bei markanten Lagen mit viel Neuschnee auf.

Faktor Wind

Der Wind spielt für Lawinen eine ganz entscheidende Rolle: Verfrachteter Schnee lagert sich auf windabgewandten Seiten von Hängen ab und es bilden sich Treibschnee und Schneewächten. Diese sind in der Regel für ein paar Tage nur schlecht verbunden zur unteren Schneeschicht und sind somit besonders leicht zu stören. Wenn Triebschnee von frischem Neuschnee überlagert wird und somit schlecht zu erkennen ist, dann ist die Lage besonders brenzlig. Details zur Lawinenskala gibt es hier: die Lawinenwarnstufen.

Wind und Schnee © Nikolas Zimmermann
Wind und Schnee stellen eine gefährliche Kombination dar. © Nikolas Zimmermann

Foto: Kecko on Visual Hunt / CC BY

Die Lawinenwarnstufen

Lawinenwarnschild. @Wikimedia Commons/Root5.5

Die Lawinensituation wird von den regionalen Lawinenwarndiensten beurteilt und dementsprechend die Warnstufe in Kombination mit einem Lagebericht ausgegeben. In der Regel wird die Lawinengefahr ab dem ersten großen Schneefall täglich aktualisiert. Die Informationen kann man auf den Homepages der jeweiligen Dienste abrufen.

Seit 1993 dient die ‚Europäische Gefahrenskala für Lawinen‘ zur Einschätzung der Lawinengefahr in den Bergen. Diese Skala gliedert sich nach der Lawinengefahr aufsteigend in fünf Stufen:

  • Stufe 1: gering
    Die vorhandene Schneedecke ist sehr gut verfestigt und stabil, somit ist die Lawinengefahr gering. Nur an wenigen, sehr steilen Hängen sind aufgrund hoher Zusatzbelastung (z.B. einer Skitourengruppe ohne Abstand) Lawinen möglich. Ansonsten kann es lediglich zu kleinen Rutschungen kommen.
  • Stufe 2: mäßig
    In einigen Hängen, welche steiler sind als 30 Grad, ist die Schneedecke nur mäßig verfestigt. Insbesondere in diesen Hängen sind bei großer Zusatzbelastung Lawinen möglich, ansonsten herrschen aber gute Tourenbedingungen vor. Einzelne spontane, nicht allzu große Lawinen sind dennoch nicht ausgeschlossen.
  • Stufe 3: erheblich
    Eine Auslösung von Lawinen ist in Steilhängen mit einer Neigung von mehr als 30 Grad bereits von einzelnen Skifahrern möglich. Die Tourenmöglichkeiten sind somit eingeschränkt und erfordern lawinenkundliches Beurteilungsvermögen. Selbst ohne Fremdeinwirkung sind mittlere, vereinzelt auch größere Lawinen an exponierten Stellen möglich. Die Stufe 3 ist besonders heimtückisch und wird meist unterschätzt, so passieren bei Lawinenwarnstufe 3 die meisten tödlichen Unfälle!
  • Stufe 4: groß
    Eine Lawine kann bereits bei geringer Zusatzbelastung ausgelöst werden. Auch spontane Auslösungen, also ohne menschliches Zutun, sind wahrscheinlich. Die Tourenbedingungen sind somit stark eingeschränkt!
  • Stufe 5: sehr groß
    Die Schneedecke ist allgemein nur schwach verfestigt und instabil, somit kann es selbst ohne Zusatzbelastung zu großen bis sehr großen Lawinen kommen. Diese sind auch in mäßig steilem Gelände zu erwarten. Von Skitouren ist somit ausdrücklich abzuraten, insbesondere da man bei einem etwaigen Unglück auch die Bergretter in Gefahr bringt!

Die unterschiedlichen Webauftritte der regionalen Lawinenwarndienste von Österreich, der Schweiz und Deutschland sowie anderen Gebieten Europas sind unter diesem Link verfügbar.

26.12.1999: Orkantief Lothar – ein Rückblick

Bodendruckkarte vom 26.12.1999, 01 Uhr @ http://www.wetter-express.de/lothar.htm

1999 – eine Zeit, in welcher die Meteorologie im Vergleich zu heute noch deutlich weniger fortschrittlich war. Wetterprognosen waren weniger präzise und kurzfristige Entwicklungen wurden schlechter erfasst. Zudem war das Warnmanagement mit dem von heute nicht vergleichbar. Und so kam es, dass sich in der Nacht auf den 2. Weihnachtsfeiertag über der Biskaya, eingebettet in eine kräftige westliche Strömung an der Südflanke eines umfangreichen Tiefdruckkomplexes über dem Nordatlantik ein Randtief bildete. Unscheinbar muss es zunächst gewirkt haben, doch die Intensivierung in den nächsten Stunden war gewaltig. Damalige Wettermodelle müssen Probleme mit der Einordnung dieser Entwicklung gehabt haben, denn absehbar war diese lange Zeit nicht.

Warnungen sehr kurzfristig

Im Laufe des Vormittags verlagerte sich das Tief über den Norden Frankreichs hinweg nach Luxemburg und allmählich wurde auch in Deutschland klar, was da aufkommt. Erste Nachrichten von Todesopfern in Paris kamen über die Radiosender und Wetterberichte wurden angepasst, Sturmwarnungen ausgegeben. Doch das war kaum mehr rechtzeitig. Mit großer Geschwindigkeit rauschte Lothar über die Mitte Deutschlands hinweg und erreichte bereits am Nachmittag die Oder. Kurz, aber sehr heftig – nach 6 Stunden war alles vorbei.

Spitzenböen durch Orkan Lothar am 26.12.1999 @ UBIMET, DWD
Spitzenböen durch Orkan Lothar am 26.12.1999 @ UBIMET, DWD

Böen bis zu 272 km/h auf den Bergen

Die meisten Menschen wurden komplett überrascht, nichts hatte in den Wetterberichten auf einen derartigen Orkan hingewiesen. Neben dem Norden Frankreichs waren vor allem die Schweiz und die Südhälfte Deutschlands betroffen. Auf dem knapp 700 m hohen Berg Hohentwiel bei Singen wurden nahezu unglaubliche 272 km/h gemessen, auf dem Wendelstein waren es 259 km/h. Auf dem Feldberg war der letzte Wert 212 km/h, bevor die Wetterstation den Geist aufgab. Doch auch im Flachland wurden verbreitet deutliche Orkanböen registriert: Im Schweizer Brienz waren es außergewöhnliche 181 km/h, in Deutschland stammt der höchste Wert mit 151 km/h aus Karlsruhe. Hier zog das Tiefzentrum nur knapp vorbei, der Luftdruck fiel an der Station innerhalb von 10 Stunden um beeindruckende 30 hPa.

Über 100 Todesopfer zu beklagen

Ganze Wälder wurden gekappt, vor allem der Schwarzwald lag im Bereich des stärksten Orkanfeldes. Mit geschätzten 6 Mrd. US-$ gilt Lothar als einer der weltweit teuersten Versicherungsfälle. Zudem waren 110 Todesopfer zu beklagen – sicherlich auch aufgrund unzureichender Warnungen. Die meisten Menschen starben in Frankreich, wo am Tag darauf noch ein zweites Orkantief durchzog. In Baden-Württemberg wurden allein durch Lothar 13 Menschen getötet.

 

Titelbild: Bodendruckkarte vom 26.12.1999, 01 Uhr @ http://www.wetter-express.de/lothar.htm

 

Richtig lüften im Winter

Winterfenster @ https://pixabay.com/de/users/jill111-334088/

Stoß- statt Dauerlüften

Wer ständig die Fenster gekippt hat und gleichzeitig heizt, wirft das Geld buchstäblich zum Fenster hinaus. Dauerhaft gekippte Fenster kühlen Räume und Wände aus. Statt Dauerlüften wird Stoßlüften empfohlen. Am Besten ihr öffnet morgens, nach der Arbeit und abends alle Fenster in der Wohnung für einige Minuten, um ordentlich durchzulüften. Wer tagsüber daheim ist, der sollte versuchen vier- oder fünfmal am Tag zu lüften. Falls die Fenster gegenüber liegen ist das ideal und beide können gleichzeitig geöffnet werden. Falls nicht, könnt ihr Türen öffnen um einen kurzen Durchzug zu schaffen.

Schimmelbildung vermeiden

Wer im Winter nicht lüftet, der riskiert Schimmelbildung. Die feuchte Raumluft bleibt in den Zimmern stehen und an den Wänden bildet sich Schimmel. Vor allem im Badezimmer und in der Küche ist Lüften essenziell, da hier besonders viel Feuchtigkeit entsteht. Auch hier sind einige Minuten Stoßlüften ausreichend.

Heizkörper @ https://pixabay.com/de/users/ri-138286/
Heizkörper @ https://pixabay.com/de/users/ri-138286/

Heizkörper @ https://pixabay.com/de/users/ri-138286/

Heizung ausschalten

Während ihr stoßlüftet, schaltet bitte die Heizung aus. Da die Heizung versucht gegen die plötzliche Kälte anzukämpfen, wird sehr viel Energie verschwendet.

Gesund wohnen

Im Winter strapaziert und reizt die trockene Heizungsluft die Schleimhäute. Ihr seid somit anfälliger auf Erkältungskrankheiten. Wer im Winter jedoch richtig lüftet, sorgt dafür, dass trockene, abgestandene Luft gegen frische Luft im Zimmer ausgetauscht wird. Gegen die trockene Heizungsluft im Winter helfen Grünpflanzen oder Raumbefeuchter, denn sie erhöhen die Luftfeuchtigkeit.

 

Titelbild: @ https://pixabay.com/de/users/jill111-334088/

Zwei Vulkanausbrüche rund um Weihnachten

Vulkanausbruch

Anak Krakatau

Der Ausbruch des Anak Krakataus war von der Intensität her nicht übermäßig heftig, jedoch sorgte eine teils unterseeische Hangabrutschung für einen Tsunami, der nach aktuellem Stand 429 Menschen tötete und rund 1500 verletzte. Der Anak Krakatau befindet sich auf dem pazifischen Feuerring, dem geologisch aktivsten Teil der Erde. Dort befinden sich die meisten (aktiven) Vulkan der Erde.

Indonesien, wo der Anak Krakatau liegt, ist eines der vulkanreichsten Länder der Erde. Der Name bedeutet soviel wie das Kind des Krakataus. Der momentan aktive Vulkankegel ist einer der drei Schlote des ehemaligen Vulkans Krakataus. Dieser war 1883 nach einer der größten Eruptionen der jüngeren Menschheitsgeschichte fast vollständig im Meer versunken und hatte einen gewaltigen Tsunami ausgelöst, der mehr als 36.000 Menschen tötete.

Momentan soll sich der Schlot als Folge der Hangrutschung unter der Wasseroberfläche befinden. Dieses bedeutet, dass austretende Lava mit dem Meerwasser explosiv reagiert und weiter Asche, Gesteinsbrocken und Wasserdampf zu sehen sind.

Welche Bedeutung große Vulkanausbrüche auf das weltweite Klima haben können, hat man im Jahre 1815/1816 gesehen. Damals war der Tambora, ebenfalls in Indonesien gelegen, noch gewaltiger ausgebrochen, als der Krakatau 68 Jahre später. Näheres dazu hier.

Ätna

An Heiligabend ist zudem der Ätna ausgebrochen. Die Eruption hatte eine moderate Stärke, was auch üblich ist für den Ätna. Die Eruptionen sind hier anders, da u.a. die Bestandteile der Lava anders sind als z.B. am Anak Krakatau. Über Verletzte oder Tote ist nichts bekannt. Der Flughafen von Catania musste geschlossen werden, aufgrund der Asche.

 

 

 

Tietelbild: Boris Behncke/ @etnaboris /Twitter (https://twitter.com/etnaboris/status/1077203982462996481)

Astronomischer Winterbeginn bringt Tauwetter

Herbstblätter mit Winterlandschaft im Hintergrund. ©pixabay.com

Der meteorologische Winter hat bereits am 1. Dezember begonnen, mit der Wintersonnenwende beginnt auch der astronomischer Winter. Der heutige Tag stellt den kürzesten Tag des Jahres dar:

  • Wien: 8 Stunden und 19 Minuten
  • Berlin: 7 Stunden und 37 Minuten
  • Bern: 8 Stunden und 29 Minuten

Ab Morgen werden die Tage langsam wieder länger: Vorerst nur um wenige Sekunden, nach Weihnachten dann um etwa 1 Minute pro Tag und ab dem 10. Jänner um etwa 2 Minuten täglich. In exakt einem Monat sind die Tage dann schon etwa 40 Minuten länger.

Die Tage werden langsam wieder länger
Die Änderung der Tageslänge im Jahresverlauf. © UBIMET

Wind und Regen

Unter dem Einfluss einer milden Höhenströmung aus West präsentiert sich das Wetter von seiner milden Seite. Selbst in den Mittelgebirgen sowie in den Alpen stellt sich durchwegs Tauwetter ein. Die Frostgrenze steigt hier vorübergehend auf über 2.000 m an,  zudem wird im Flachland stürmischer Wind zum Thema: Am Freitag sind vor allem die Schweiz und Deutschland betroffen, am Samstag dann Österreich und Bayern.

Die Temperaturen steigen an
Vom Atlantik her erfasst uns in den kommenden Stunden milde Luft. © UBIMET

Warum kommt das Wetter meist aus Westen?

Photo credit: Joachim S. Müller on Foter.com / CC BY-NC-SA

Durch die Position der Erde zur Sonne werden die Gebiete um den Äquator ständig erwärmt. Die warme Luft steigt hier auf, am Boden entsteht die sogenannte äquatoriale Tiefdruckrinne. An den Polen fehlt hingegen diese Energiezufuhr, somit sinkt die Luft hier ab und es entsteht ein Hochdruckgebiet. Da der Wind am Boden vom Hoch zum Tief weht, müsste auf der Nordhalbkugel somit eigentlich immer Nordwind wehen. In größeren Höhen ist das Bild dagegen umgekehrt, hier müsste die am Äquator erwärmte Luft immer polwärts wehen. Dies ist allerdings nicht der Fall, weil die Erdrotation die Winde von ihrem Weg ablenkt. Die dafür verantwortliche Corioliskraft lenkt auf der Nordhalbkugel jeglichen bewegten Körper in Strömungsrichtung gesehen nach rechts ab.

Erddrehung und Polarjet

Durch die Corioliskraft werden die Südwinde in größeren Höhen bereits 3000 Kilometer nördlich des Äquators also auf westliche Richtung umgelenkt. Die mittlerweile erkaltete Luft sinkt dabei ab, weshalb sich dort der subtropische Hochdruckgürtel befindet. Da der Wind in Bodennähe um ein Hoch auf der Nordhalbkugel im Uhrzeigersinn weht, gibt es an dessen Nordflanke Westwind. Im Gegensatz dazu bekommen die nördlichen, vom Pol stammenden Winde durch die Corioliskraft vermehrt eine östliche Komponente. Etwa beim 60. Breitengrad treffen sie schließlich auf die milden Luftströmungen an der Nordflanke des subtropischen Hochdruckgürtels und es entsteht die subpolare Tiefdruckrinne. Diese wird durch den Polarjet überlagert, der die Hochs und Tiefs der mittleren Breiten im Mittel von West nach Ost führt.

 

Titelbild: Joachim S. Müller on Foter.com / CC BY-NC-SA

Weiße Weihnachten: Trend und Klimatologie

Weihnachtliche Stimmung bei Schnee, 2017 in Kaprun @ Steffen Dietz

Update 18. Dezember: Ausgeprägtes Weihnachtstauwetter

Derzeit sind die Voraussetzungen für ein weißes Weihnachtsfest so gut wie selten, liegt doch in weiten Teilen des Landes Schnee bzw. kommt am Donnerstag nahezu überall der ein oder andere Zentimeter noch neu dazu. Doch dabei wird es nicht lange bleiben, genau zum 4. Adventswochenende kommt die Westwindzirkulation in Gang und bringt auch zu Weihnachten milde Luft und zeitweiligen Regen. Selbst die Rückkehr polarer Kaltluft am Stefanitag erscheint nach heutigem Modellstand weniger wahrscheinlich, wenngleich aber weiterhin möglich.

Wetterlage zu Heiligabend, Temperatur in 1500 m Höhe @ UBIMET
Wetterlage zu Heiligabend, Temperatur in 1500 m Höhe @ UBIMET

Bereits am Wochenende steigen die Temperaturen in den Niederungen verbreitet auf deutlich positive Werte und entlang der Alpennordseite fällt immer wieder Regen, die Schneefallgrenze steigt auf 1300 bis 1500 m an. Am Montag, dem Heiligen Abend, ändert sich daran nicht viel. Es deuten sich zeitweise Wolken und etwas Regen an, wetterbegünstigt bleibt die Alpensüdseite. Dazu muss man sich auf Temperaturen deutlich oberhalb des Gefrierpunkts einstellen, in einigen Regionen wie im westlichen Donauraum sind gar über 10 Grad wahrscheinlich. Entsprechend diesen Aussichten dürfte letzter Schnee in den Niederungen bereits am Wochenende getaut sein, für alle Landeshauptstädte sieht es bezüglich weißer Weihnachten äußerst schlecht aus. Da die aktuelle Schneesituation in den Bergen derzeit gut ist, sollte sich die Schneedecke hier, wenn auch nass und tauend, aber bis Weihnachten halten – im Westen etwa oberhalb von 1000 m, im Osten etwa oberhalb von 800 m. Darunter wird es nach derzeitigem Stand auch inneralpin wenig winterlich bleiben.

Wahrscheinlichkeit für weiße Weihnachten in den Landeshauptstädten 2018

  • bei 0 %: Bregenz, Innsbruck, Salzburg, Linz und St. Pölten, Wien, Eisenstadt, Klagenfurt und Graz
  • bei 5 %:  X
  • bei rund 10 %:  X
  • bei rund 20 %:  X

Statistik zu Weihnachten

Weiße Weihnachten in den Niederungen sind generell selten. Allgemein spielt dabei die Seehöhe eine wichtige Rolle: Ab einer Höhe von etwa 500 m liegt die Wahrscheinlichkeit bei 40 %, in 800 m Höhe bei 70 % und ab 1.200 m über 90 %.

Wahrscheinlichkeit für Schnee am 24. Dezember und maximale Schneehöhe seit 1951 @ UBIMET
Wahrscheinlichkeit für Schnee am 24. Dezember und maximale Schneehöhe seit 1951 @ UBIMET

Wahrscheinlichkeit nimmt ab

Die Wahrscheinlichkeit für weiße Weihnachten im Flachland nimmt im Zuge des Klimawandels ab, so hat sich die Zahl der Tage mit Schnee am 24. Dezember seit Anfang der 80er Jahre in etwa halbiert. Vor allem in den 2000ern hat die Häufigkeit deutlich abgenommen: In Wien und Eisenstadt war es letztmals vor sechs Jahren weiß. In Innsbruck wurde im Jahr 2017 zwar eine Schneedecke von 2 cm Schnee gemeldet, tatsächlich handelte es sich dabei aber nur um die letzten Reste einer Altschneedecke am Stadtrand. Am längsten ohne Schnee zu Weihnachten auskommen muss man in Sankt Pölten, wo zuletzt 2007 am 24. Dezember Schnee lag.

Viel Schnee im Jahr 1969

Besonders in den 60er Jahren lag zu Weihnachten häufig Schnee, in Klagenfurt war es damals sogar jedes Jahr weiß. Die Rekorde aus dem Jahr 1969 im Norden und Osten haben bis heute Bestand: Damals gab es in Wien 30 cm, in Eisenstadt 39 cm und in Sankt Pölten sogar 50 cm der weißen Pracht. Letztmals Schnee in allen Landeshauptstädten zu Weihnachten gab es hingegen im Jahr 1996.

Übersicht zu aufgetretenen Weihnachten mit Schnee seit 1981 @ UBIMET
Übersicht zu aufgetretenen Weihnachten mit Schnee seit 1981 @ UBIMET

Der früheste Sonnenuntergang des Jahres

Der früheste Sonnenuntergang des Jahres

Der kürzeste Tag des Jahres ist der 21. Dezember, dann erreicht die Sonne in den Breiten unterhalb des südlichen Wendekreises den Höchststand. Nördlich des Polarkreises (66,57° N) ist es dagegen durchgehend finster.

Der früheste Sonnenuntergang findet bereits vor der Sonnenwende statt
Die Tageslänge im Laufe des Jahres (grau = Nacht; weiß = Tag).

Aufgrund der Neigung der Erdachse und der elliptischen Umlaufbahn unseres Planeten erfolgt der früheste Sonnenuntergang des Jahres hierzulande bereits am 11. Dezember und nicht erst zur Wintersonnenwende am kürzesten Tag. Den spätesten Sonnenaufgang gibt es hingegen erst zu Neujahr, danach nimmt die Tageslänge sowohl am Morgen als auch am Abend langsam wieder zu.

Anbei eine Übersicht (Sonnenaufgang und Sonnenuntergang):

11. Dezember 21. Dezember 1. Januar
Wien 7:35 bis 15:59 7:42 bis 16:02 7:45 bis 16:10
Berlin 8:07 bis 15:51 8:15 bis 15:53 08:17 bis 16:01
Bern 8:06 bis 16:40 8:13 bis 16:42 8:16 bis 16:50

Die kältesten Orte der Welt

Der kälteste Ort liegt in der Antarktis

Ideale Bedingungen für eisige Temperaturen findet man in kontinentalen Gebieten, also weit weg vom Meer und besonders in Hochtälern sowie in Becken- oder Muldenlagen. Zusätzlich sind drei Wetterbedingungen für eine starke Abkühlung der Luft besonders förderlich:

  • windschwache Verhältnisse
  • sternenklarer Himmel bzw. sehr trockene Luft
  • schneebedeckter Boden

Gefrierschrank Sibirien

Die kältesten bewohnten Orte der Erde befinden sich im Nordosten Sibiriens in Russland. Werchojansk sowie Oimjakon halten die Rekorde bei den Tiefstwerten mit jeweils -67,8 Grad Celsius. Die Entfernung dieser Orte beträgt etwa 630 km und in dieser Gegend sind beinahe das ganze Jahr Hochdruckgebiete wetterbestimmend. Gebirgsketten umgeben die Region und sorgen für ausgeprägte Inversionswetterlagen. Das Meer hat kaum einen Einfluss auf das dortige Klima.

Rekordhalter Antarktis

Es geht aber noch kälter! Der sogenannte Gefrierschrank der Erde befindet sich in der Antarktis in der südlichen Hemisphäre. Am Ostantarktischen Plateau befindet sich seit 1957 die russische Antarktisstation namens „Wostok“in etwa 3.500 m Höhe, 1287 km vom geographischen Südpol entfernt. Am 21. Juli 1983 wurden dort eisige -89,2 Grad Celsius gemessen. Im Jahr 2010 wurden −93,2 Grad  und im Juli 2004 sogar -98,6 Grad Celsius registriert. Diese Werte wurden aber nicht offiziell anerkannt, da sie anhand von Satellitendaten ermittelt wurden (statt mit einer Wetterstationen in 2 m Höhe über dem Boden gemessen).

Rekorde

Kontinent Wert und Datum Ort
Antarktis -89.2 °  am 27.7.1983 Wostok-Station, Ostantarktisches Plateau
Asien -67,8 °C am 7.2.1892

-67,8 °C am 6.2.1933

Werchojansk, Russland

Oimjakon, Russland

Australien -23,0 °C am 29.6.1994 Charlotte Pass, NSW
Afrika -23,9 °C am 11.2.1935 Ifrane, Marokko
Nordamerika -63,0 °C am 3.2.1947 Snag, Yukon, Kanada
Nordamerika -66,1 °C am 9.1.1954 North Ice, Grönland
Südamerika -32,8 °C am 1.6.1907 Sarmiento, Argentinien
Europa -58,1 °C am 31.12.1978 Ust-Schtschuger, Russland
Europa (EU) -52,6 °C am 2.2.1966 Vuoggatjålme, Schweden

Anbei noch die kältesten gemessenen Temperaturen in bewohnten Orten in Deutschland, Österreich und der Schweiz:

  • -41.8 Grad in La Brevine im Neuenburger Jura / CH (12.1.1987)
  • -37.8 Grad in Hüll/Wolznach in Bayern / D (12.2.1929)
  • -36.6 Grad in Zwettl im Waldviertel / A (12.2. 1929 )

Noch kältere Temperaturen wurden allerdings in manchen Senken bzw.  Dolinen in höheren Lagen der Alpen gemessen wie etwa im Grünloch in Österreich (-52.6 Grad), am Funtensee in Bayern (-45,9), auf der Glattalp in der Schweiz (-52,5) oder in der Busa Fradusta (-49,6) in Italien.

Kälteste Hauptstadt

Als kälteste Hauptstadt der Welt gilt mit einer Jahresdurchschnittstemperatur von -2 Grad Ulaanbaatar in der Mongolei. Die tiefste gemessene Temperatur in der Metropole mit 1,5 Millionen Einwohnern liegt bei -42,2 Grad. An zweiter Stelle folgt Astana in Kasachstan, wo es im Mittel zwar etwas milder ist, dafür die Extreme aber ausgeprägter sind.

Eisregen sorgte im Norden für Glätte

In Oberösterreich und Niederösterreich gab es "Blitzeis"

Die Umstellung der Großwetterlage hat von Sonntagnachmittag bis Montagmorgen neuerlich zu gefrierendem Regen geführt: Während in der Höhe bereits milde Luft atlantischen Ursprungs aufgezogen war, hielt sich in den Niederungen im Norden gebietsweise noch frostige Luft.

Kaltluftsee

In der folgenden Abbildung ist das gemessene Vertikalprofil der Temperatur und des Taupunkts über Wien am Sonntagnachmittag dargestellt. In mittleren Höhenlagen sorgte westlicher Wind bereits für deutlich positive Temperaturen von bis zu +9 Grad in 1100 m Höhe (roter Bereich). In den Niederungen lagerte dagegen noch der sogenannte Kaltluftsee mit frostigen Temperaturen (blauer Bereich). Diese sehr unterschiedlichen Luftmassen wurden durch eine Temperaturinversion in etwa 800 m Höhe getrennt.

Die Inversion führte zu Eisregen
Radiosondenaufstieg von Wien am Sonntag. © Univ. of Wyoming / UBIMET

Weitere Details zu Inversionen gibt es hier: Inversionen im Herbst.

Glättegefahr

Die milden Temperaturen in mittleren Höhenlagen sorgten für eine sehr hohe Schneefallgrenze, obwohl in den Niederungen frostige Luft lagerte. Besonders im Oberösterreichischen Zentralraum sowie im Most- und Waldviertel gab es somit Eisregen, der besonders auf Nebenstraßen sowie ungesalzenen Gehwegen zu Glätte geführt hat. Auch in anderen Regionen gab es lokal aber spiegelglatte Straßen, so musste etwa die Höhenstraße in Wien am Montagmorgen abschnittsweise gesperrt werden.

Eisregen

Als gefrierenden Regen oder Eisregen bezeichnet man Regen, der aus einer wärmeren in eine kältere Luftschicht mit Temperaturen unter dem Gefrierpunkt fällt. Wenn die Wassertropfen auf den unterkühlten Boden treffen gefrieren sie und es bildet sich Glatteis. Bereits am Freitag gab es in Oberösterreich, Ostbayern und Westtschechien eine ausgeprägte Glatteislage. Die folgenden Bilder stammen aus Oberösterreich.

Wetter und Klima – Der Unterschied

Klimawandel @ https://pixabay.com/en/users/Tumisu-148124/

Beim täglichen Smalltalk über das Wetter werden vielfach Begriffe wie Regen, Sonnenschein, Wind, Hitze oder Kälte verwendet. Tatsächlich beschreibt das Wetter den aktuellen Zustand der Atmosphäre innerhalb einer Zeitspanne von Stunden bis zu mehreren Tagen. Dabei wird meist Bezug auf einen bestimmten Standort oder auch eine Region genommen. Tief- und Hochdruckgebiete bestimmen den Wetterablauf und sorgen für kurzfristige Veränderungen.

 

Abweichung der Temperatur am 22.11.2018 zeigt im Nordosten der USA deutlich zu niedrige Werte, während der Rest der nördlichen Halbkugel zu hohe Werte aufweist @ https://climatereanalyzer.org
Abweichung der Temperatur am 22.11.2018 zeigt im Nordosten der USA deutlich zu niedrige Werte, während der Rest der nördlichen Halbkugel zu hohe Werte aufweist @ https://climatereanalyzer.org

Die Beschreibung des Klimas bezieht sich im Gegensatz dazu auf deutlich längere Zeiträume von Jahrzehnten bis hin zu ganzen Zeitaltern. Laut Weltorganisation für Meteorologie (WMO) muss die Beobachtungszeit lange genug sein, um eine statistische Auswertung bezüglich Abweichung vom Mittelwert (Schwankungsbereich), Extremwerte und periodische Schwingungen (Sonnenfleckenzyklus, Eiszeiten usw.) ausmachen zu können. Um diese international zu vergleichen, werden sogenannte Klimanormalperioden, meist 30 Jahre (z.B. 1961 bis 1990), festgelegt.

Twitter-Post des amerikanischen Präsidenten und Reaktion einer verblüfften Jugendlichen
Twitter-Post des amerikanischen Präsidenten und Reaktion einer verblüfften Jugendlichen

 

Sowohl das Wetter als auch das Klima fallen in den Arbeitsbereich eines Meteorologen, jedoch werden diese unterschiedlich berechnet bzw. analysiert. Für die tägliche Wettervorhersage kommen sogenannte numerische Wettermodelle zum Einsatz, die sich durch eine hohe räumliche (ca. 4 bis 15 km) und zeitliche Auflösung (einzelne Stunden) auszeichnen. Je nach Wetterlage sind damit genaue Vorhersagen von 5 bis 10 Tagen möglich. Im Gegensatz dazu ist die räumliche Auflösung von Klimamodellen deutlich geringer und bewegt sich im Bereich von 100 km oder mehr. Deren Aufgabe ist es, deutlich länger in die Zukunft zu blicken (Monate bis Jahre).

 


Titelbild: @ https://pixabay.com/en/users/Tumisu-148124/

November: Ist dieser Monat wirklich so grau?

Im November gibt es viel Nebel und Hochnebel

Der November stellt den dritten und damit letzten Herbstmonat dar. Die durchschnittliche tägliche Sonnenscheindauer geht bis Monatsende nochmals spürbar zurück, von etwas über drei Stunden zu Monatsbeginn auf nur noch eineinhalb Stunden im Mittel am Monatsende. In typischen Nebelregionen wie etwas der Donauraum, das Schweizer Mittelland oder der Bodenseeraum scheint die Sonne noch seltener, etwas häufiger dagegen auf den Bergen. Wie ein Blick auf die folgende Tabelle zeigt, ist der November allerdings nicht der trübste Monat des Jahres.

Mittlere Sonnenscheindauer (h) November Dezember Januar
Wien (A) 66 51 70
Innsbruck (A) 101 83 100
Graz (A) 75 56 76
Berlin (D) 55 41 51
Hamburg (D) 49 32 45
Köln (D) 54 40 50
Konstanz (D) 53 41 49
Zürich (CH) 50 35 48
Basel (CH) 68 52 67

Ein paar allgemeine Infos zum Thema Inversionswetterlage gibt es hier.

Stimmungstief

Obwohl der Dezember und gebietsweise auch der Januar grauer sind, wird besonders der November mit gedrückter Stimmung verbunden. Dies liegt vor allem an der raschen Veränderung der Lichtverhältnisse im Herbst. Mit den dunklen Tagen kommt es bei einem kleinen Teil der Mitmenschen zum sogenannten „Novemberblues“, einem Seelentief. Studien zeigen, dass in Mitteleuropa etwa zehn Prozent der Bevölkerung im Winter unter Symptomen wie Müdigkeit, Energielosigkeit oder Konzentrationsschwäche leiden.

Die besten Tipps

Gegen den Novemberblues hilft in vielen Fällen der Aufenthalt im Freien, selbst an einem trüben Novembertag ist es draußen in der Regel deutlich heller als in den Innenräumen. Das Licht wirkt dem Stimmungstief entgegen. Zusätzlich zu empfehlen sind sportliche Betätigungen im Freien, die kühle Luft kurbelt das Immunsystem an und stärkt somit die körpereigenen Abwehrkräfte. Manche Menschen schaffen sich auch mittels kurzer Aufenthalte im Solarium Abhilfe, wesentlich empfehlenswerter sind allerdings Ausflüge in die Berge, wo man oberhalb des Nebels ausreichend Vitamin D tanken kann.

Die nebeligsten Orte weltweit

Die vermutlich nebeligste Region der Welt ist die Neufundlandbank (Grand Banks) südöstlich von Neufundland, wo durch das Aufeinandertreffen von Labrador- und Golfstrom an mehr als 120 Tagen pro Jahr Sichtweiten von weniger als einem Kilometer herrschen. Auch manche Berge stecken allerdings oft in den Wolken, so soll der schottische Berg Ben Nevis sogar an 300 Tagen pro Jahr in Nebel gehüllt sei.

Gesund und fit durch den Herbst

Spaziergang im herbstlichen Wald - Photo credit: jd.echenard on Visualhunt.com / CC BY-ND

Gerade in der Übergangsjahreszeit machen es einem die häufigen Wetterwechsel schwer, zur richtigen Garderobe zu greifen. Die großen Temperaturunterschiede zwischen Tag und Nacht erschweren die Wahl der richtigen Kleidung noch weiter. Wer sich also nicht nach dem Zwiebelschalenprinzip kleidet, damit er tagsüber ein paar Schichten ablegen kann, bekommt zunehmend ein Problem. Die Sonne hat nämlich noch genug Kraft und ihr kommt leicht ins Schwitzen. Wer allerdings zu viele Kleidungsstücke ablegt, wird rasch vom kühlen Wind überrascht und die Erkältungsgefahr steigt.

Nasskalte Witterung besonders gefährlich

Die Gefahr den Körper zu unterkühlen und damit das Immunsystem zu schwächen, ist besonders bei nass-kalter, windiger Witterung hoch.

  • Bei tiefen Temperaturen neigt der Körper dazu auszukühlen.
  • Wird Kleidung oder die Haut nass, verdunstet das Wasser. Dabei entzieht es der Haut Wärme und kühlt diese zusätzlich.

Ansteckungsgefahr

Gerade in geschlossenen, schlecht belüfteten Räumen kann die Virenlast sehr hoch werden. Besonders viele Viren lauern auf Türgriffen oder Liftknöpfen. Ist das Immunsystem bereits geschwächt, kommt es zum Ausbruch von Erkältungen bis hin zu grippalen Infekten oder gar der Grippe. Um dem vorzubeugen, ist regelmäßiges Händewaschen Pflicht.

Was schwächt unser Immunsystem?

  • Kälte: Kühlt der Körper aus, ist er empfindlicher gegenüber Viren. Bitte also immer genug anziehen!
  • Schlafmangel: Schlafen sie weniger als sieben Stunden pro Nacht, ist ihr Risiko zu erkranken um das Dreifache erhöht.
  • Stress: Stress greift die Abwehrkräfte an. Das Einlegen von Pausen hilft, auch so manches gelassener hinzunehmen.
  • Bewegungsmangel: Zu wenig Freizeit an der Natur schwächt uns. Mindestens eine halbe Stunde pro Tag sollten wir an der frischen Luft verbringen und/oder joggen oder schwimmen.
  • Falsche Ernährung: Nicht nur das falsche Essen, auch zu wenig Essen schwächt unsere Abwehrkräfte. Um einem Vitaminmangel vorzubeugen, empfehlen sich einige Portionen Obst und Gemüse pro Tag. Aber auch Vollkornprodukte, Eiweiß und gesunde Fette sollen täglich auf dem Speiseplan stehen.
Obst stärkt das Immunsystem @ Photo credit: Günter Hentschel on Visualhunt / CC BY-ND
Obst stärkt das Immunsystem @ Photo credit: Günter Hentschel on Visualhunt / CC BY-ND

Stärkung des Immunsystems

Kurz zusammengefasst sollte man auf Folgendes achten:

  • Vitaminreiche Nahrung
  • Sport (einmal pro Tag außer Atem kommen wirkt Wunder)
  • Frischluft (Spaziergänge im Wald helfen)
  • Psychisches Wohlbefinden (kein Stress!)
  • Ausreichend Schlaf (mindestens sieben Stunden)
  • Menschenansammlungen meiden (Infektionsgefahr!)
  • Bei ersten Anzeichen einer Erkältung auf Sport verzichten

 

Titelbild: Spaziergang im herbstlichen Wald – Photo credit: jd.echenard on Visualhunt.com / CC BY-ND

Föhnwolken – Beeindruckende Aufnahmen aus Vorarlberg

Föhnwolken bei Sonnenuntergang, aufgenommen von einer Webcam @ https://www.foto-webcam.eu/webcam/roethis-west

Föhnwolken nehmen häufig die Form von Linsen oder Mandeln an, sind langgestreckt und klar von ihrer Umgebung abgegrenzt. Daher werden sie bspw. auch als Föhnfische bezeichnet, machmal sehen sie wie Ufo’s aus. Sie entstehen, wenn Gebirge überströmt werden und die Luft entsprechend gehoben wird. Auf der windabgewandten Seite entstehen Leewellen, welche mitunter ortsfest sind. Die Luft strömt also hindurch, durch aufsteigende Bewegungen an festen Punkten kondensiert die enthaltene Feuchte und Wolken erscheinen beständig an der gleichen Stelle.

 

Am Dienstagabend wurden in Vorarlberg einige schöne Aufnahmen gemacht, als die untergehende Sonne derartige Föhnwolken beschienen hat:

 


Föhnwolken bei Sonnenuntergang, aufgenommen von einer Webcam @ https://www.foto-webcam.eu/webcam/zugspitze
Föhnwolken bei Sonnenuntergang, aufgenommen von einer Webcam @ https://www.foto-webcam.eu/webcam/zugspitze

Titelbild: Föhnwolken bei Sonnenuntergang, aufgenommen von einer Webcam @ https://www.foto-webcam.eu/webcam/roethis-west

Herbst im Mittelmeer: Unwettersaison durch Regen und Gewitter

Im Herbst gehen im Mittelmeer kräftige Gewitter nieder

Während die Gewittersaison in Mitteleuropa vor allem von Mai bis Anfang  August ihren Höhepunkt erlebt, verlagert sich der Schwerpunkt der Gewittertätigkeit in den Herbstmonaten immer weiter südwärts.

Zunehmender Tiefdruckeinfluss

Im Sommer liegt vor allem das südliche Mittelmeer häufig unter dem Einfluss des subtropischen Hochdruckgürtels, welches für trockene und heiße Wetterbedingungen sorgt. Im Herbst verlagert sich die Westwindzone im Mittel aber langsam südwärts und die Ausläufer des subtropischen Hochdruckgürtels werden nach Nordafrika abgedrängt. Aus diesem Grund stellen der Hebst und der Winter im Mittelmeer die nasseste Zeit des Jahres dar.

Im Herbst fällt der meiste Niederschlag in Dubrovnik
In Dubrovnik fällt besonders im November und Dezember viel Regen.

Labile Luftschichtung

Der zunehmende Tiefdruckeinfluss und die ersten Kaltluftvorstoße aus Nordeuropa führen in Zusammenspiel mit den milden Wassertemperaturen zu einer labilen Schichtung der Luft. In der folgenden Graphik sieht man die mittlere, potentiell verfügbare Energie für vertikale Luftmassenbewegung (MLCAPE), welche ein wichtiges Maß für Gewitter darstellt. Im Herbst verlagert sich der Schwerpunkt südwärts.

Im Herbst ist die Luftschichtung im Mittelmeer labil.
Mittlere, potentiell verfügbare Energie für Konvektion im Juni und September. © Tilev-Tanriöver

Unwettersaison

Im nördlichen Mittelmeerraum erreicht die Gewittersaison im Spätsommer und zu Herbstbeginn ihren Höhepunkt, im zentralen Mittelmeer im Laufe des Herbsts und im äußersten Süden und Osten erst im Winter. Dies spiegelt sich auch in den Ergebnissen einer Studie des ESWD wieder, welche die Monate mit den meisten Tagen mit Tornados zeigt.

Im Mittelmeer gibt es im Herbst die meisten Tagen mit Tornados
Der Monat des Jahres mit den im Mittel meisten Tagen mit Tornados. © ESWD

Mildes Mittelmeer

Die Wassertemperaturen im Mittelmeer nehmen im Zuge der globalen Erwärmung langsam zu, so gab es auch im 2018 von Ende April bis Anfang November in weiten Teilen des Meeres nahezu durchgehend überdurchschnittliche Wassertemperaturen. Auch im langjährigen Trend seit 1982 kann man ein Zunahme der mittleren Wassertemperaturen beobachten, was für die angrenzenden Länder eine Gefahr darstellt. Die Unwettersaison wird nämlich tendenziell länger und intensiver, denn je wärmer das Wasser im Herbst ist, desto mehr Energie steht für Unwetter zur Verfügung.

Das Mittelmeer wird immer wärmer
Trend der Wassertemperaturen im Mittelmeer. © CEAM

Sturzfluten in Sizilien

Auch in der letzten Woche hat anhaltender Tiefdruckeinfluss im Mittelmeerraum wiederholt für Unwetter in Italien gesorgt. Zu Wochenbeginn war vor allem der Norden Italiens von Tief VAIA betroffen, am Wochenende sorgte Tief XENA dann für gewittrigen Starkregen in den südlichen Landesteilen. In Summe kamen dabei in Italien über 30 Menschen ums Leben.

Herbst: Zeit der Inversionswetterlage mit Nebel und Hochnebel

Hochnebel im Land Salzburg

Zu dieser Jahreszeit stellt sich unter beständigem Hochdruckeinfluss immer öfter eine sogenannte Inversionswetterlage ein. Diese zeichnet sich durch eine Umkehr der normalerweise vorherrschenden Abnahme der Temperatur mit der Höhe aus, so ist es in mittleren Höhenlagen milder als in den Tal- und Beckenlagen. Dies hat zwei Ursachen:

  • Den Sonnenstand
  • Die Subsidenz bei Hochdrucklagen

Lange Nächte

Die Nächte in Mitteleuropa sind bereits über 14 Stunden lang und die Sonne steht tagsüber etwa in Wien maximal 27 Grad über dem Horizont. Die unteren Luftschichten kühlen in den langen Herbstnächten stark aus und besonders in den Tal- und Beckenlagen entstehen sogenannte Kaltluftseen, die durch die immer schwächere Sonne erst spät oder gar nicht mehr ausgeräumt werden können.

Im Herbst gibt es viel Nebel
Nebel im Rheintal. © www.foto-webcam.eu

Subsidenz

Kräftige Hochdruckgebiete im Herbst sorgen in der freien Atmosphäre für eine absinkende Bewegung der Luft („Subsidenz“). Wenn Luft absinkt, dann gelangt sie unter höheren Luftdruck und wird demzufolge komprimiert und erwärmt. Dies hat zur Folge, dass die Luft im Gebirge oft sehr trocken und die Fernsicht ausgezeichnet ist. Die Grenze zum darunterliegenden Kaltluftsee wird dann besonders markant und fördert beständigen Nebel oder Hochnebel.

In den Tallagen hält sich Nebel
Inversion mit Subsidenz. © UBIMET / www.foto-webcam.eu

Während in den Tälern und Niederungen also graues und kaltes Wetter herrscht, kann es in mittleren Höhenlagen tagsüber bei Sonnenschein mitunter auch mehr als 15 Grad milder sein! Aber auch ohne Hochnebel ist es unterhalb der Inversion häufig dunstig, denn durch die fehlende Durchmischung mit der oberen Atmosphäre sammeln sich Feuchte und Schadstoffe langsam an und die Sicht ist getrübt.

Eine Inversionswetterlage
Eine Dunstschicht im Zuge einer Inversionswetterlage in Osttirol. © www.foto-webcam.eu

November: Von Schneemassen bis Sommertag alles möglich

Temperaturen unter dem Gefrierpunkt sind im November schon wahrscheinlich.

In den vergangenen Jahren blieb der Winter in Mitteleuropa im November häufig aus, viele zu warme Monate liegen hinter uns. Der letzte zu kalte November ist in Österreich auch schon wieder 11 Jahre her, in Deutschland fiel der November 2016 minimal zu kalt aus. Der Blick in die Statistik verrät aber, dass es im November schon sehr winterlich sein kann. Eine geschlossene Schneedecke hält sich zwar in den Niederungen oft nur kurz, in den Alpen und Mittelgebirgen nach ergiebigem Schneefall aber doch bereits für einige Tage.

Sehr unterschiedliche Temperaturen möglich

Im November liegt die Monatsmitteltemperatur meist bei +3 bis +5 Grad, in höheren Alpentälern und in den Mittelgebirgen um +1 bis +2 Grad. Außerdem gehen die Temperaturen im Monatsverlauf weiter zurück, so fällt z.B. das Tagesmittel der Lufttemperatur in Wien von Anfang bis Ende November von etwa +8 Grad auf +3 Grad ab.

Aber das sind nur die durchschnittlichen Werte, möglich ist im November Vieles, die Allzeitrekorde machen es deutlich. So gab es in Österreich in Wien z.B. schon 23,7 Grad, in Bregenz gar 25,4 Grad, österreichweit hält Schlins (Vorarlberg) mit 26,6 Grad anno 1968 den Rekord. In Deutschland wurden in Rosenheim im Jahr 1997 bis zu 25,9 Grad gemessen, und selbst in Hamburg wurde mit 20,2 Grad die 20-Grad-Marke im November bereits geknackt.

Blickt man auf die Minima der Temperatur, kommt einem im Vergleich dazu das Schaudern. Am 15. November 1993 zitterten die Wiener in Mariabrunn bei bitterkalten -14,8 Grad und in St. Jakob im Defereggen (Osttirol) zeigte das Thermometer am 24. November 1975 in einer kalten Nacht bei Schneelage gar nur -27 Grad. Auch in Berlin gab es im November schon bis zu -16 Grad und selbst im wintermilden Köln wurde bereits strenger Frost bis hin zu -10 Grad registriert.  In der Schweiz wurden erst im November 2015 in La Brevine im Neuenburger Jura -23,4 Grad gemessen.

Schnee und Sturm

Während Schnee in tieferen Lagen im Oktober noch die Ausnahme darstellt, ist der erste Wintereinbruch mit einer vorübergehenden Schneedecke im November vor allem im Osten und Süden Deutschlands sowie im Alpenraum üblich. In Graz z.B. liegt im Mittel die erste geschlossene Schneedecke am 29. November. Im Norden und Westen Deutschlands lässt das erste Weiß hingegen meist bis zum Dezember auf sich warten. Im November steigt auch die Wahrscheinlichkeit für kräftige Sturmtiefs an. Erst 2015 fegte am 30. November ein solches über Mitteleuropa hinweg, in Wien wurden damals Orkanböen bis zu 126 km/h gemessen, in München waren es maximal 101 km/h.

Quelle Titelbild: pixabay

Südstau in den Alpen

Südstau bringt kräftigen Regen in Norditalien

Als Südstau werden Niederschläge an der Alpensüdseite bezeichnet, welche durch das orographische Hindernis Alpen ausgelöst oder verstärkt werden. Bei einer Südstaulage wird eine ohnehin schon recht feuchte Luftmasse durch die Alpen zum Aufsteigen gezwungen, dabei kühlt sie sich ab. Da Luft mit sinkender Temperatur weniger Wasser halten kann, verstärken sich die Niederschläge. Somit fällt bei Südstaulagen im Luv der Alpen deutlich mehr Regen oder Schnee, als im unbeeinflussten Flachland. Auf der Leeseite der Berge, also nördlich des Alpenhauptkamms, kann sich dann Föhn bemerkbar machen.

Auswirkungen auf Deutschland

In den deutschen Alpen bekommt man von den verstärkten Niederschlägen an der Alpensüdseite meist nur wenig mit, denn nördlich des Alpenhauptkamms sorgt Südföhn oft für frühlingshaftes Wetter. Die zuvor zum Aufstieg gezwungene Luft sinkt nördlich der Alpen wieder ab. Da die abwärts gerichtete Luftströmung sehr trocken ist, führt dies rasch zur Auflösung der Wolken. Der Himmel präsentiert sich oftmals sogar gering bewölkt. Zudem erwärmt sich die Luft beim Absteigen um etwa 1 Grad pro 100 m, somit wird die in den Tälern liegende, oft deutlich kühlere Luft ausgeräumt. Nicht selten kommt es dabei zu einem Temperaturanstieg von 10 Grad oder mehr.

Ergiebiger Regen im Süden

Bei kräftigen Südstaulagen gibt es besonders in den Italienischen Alpen, im Tessin sowie in Osttirol und Kärnten teils enorme Regen- oder Schneefälle. Stellenweise fallen dann über 150 Liter pro Quadratmeter innerhalb von nur 24 Stunden. In den vergangenen Tagen gab es etwa am Plöckenpass knapp über 600 Liter pro Quadratmeter in nur drei Tagen (siehe auch hier)! Sogar noch ergiebigere Mengen wurden manchmal in den Alpen in Friaul und im Tessin verzeichnet, welche zu den nassesten Regionen Europas zählen. Im Winter kann es zudem trotz der eigentlich recht milden Luftmasse sogar bis in tiefe Lagen heftigen Schneefall geben. Grund hierfür ist die Schmelzwärme des Schnees, die der Umgebung entzogen wird.

Wandern und Bergsteigen im Herbst: die 5 wichtigsten Tipps

Im Herbst gibt es oft gutes Bergwetter

Besonders im Herbst lädt das häufig stabile Wetter zu längeren und teils auch mehrtägigen Touren im Hochgebirge ein. Die Nächte werden immer länger und somit ist auch die Luftschichtung abseits von markanten Tiefdruckgebieten stabil. Dennoch muss man auch in dieser Jahreszeit ein paar wichtige Faktoren bei der Tourenplanung einkalkulieren:

  1. Geschlossene Hütten
  2. Trockene Luft
  3. Wenig Trinkwasserquellen
  4. Tageslänge
  5. Exposition

Geschlossene Hütten

Bei der Tourenplanung muss man unbedingt berücksichtigen, dass jetzt Mitte Oktober viele Berghütten bereits geschlossen sind. Aus diesem Grund sollte bei herbstlichen Touren der Rucksack mit ausreichend Essen und Trinken gefüllt sein. Auf etwas niedriger gelegenen Almen kann man dagegen teils noch bei Speck und Co. das perfekte Herbstwetter genießen.

Trockene Luft

Kräftige Hochdruckgebiete im Herbst sorgen für eine absinkende Bewegung der Luft („Subsidenz“). Sinkt ein Luftpaket ab, so gelangt es unter höheren Luftdruck und wird demzufolge komprimiert und erwärmt. Dies hat zur Folge, dass die Luft im Gebirge sehr trocken ist und man durch die Atmung Feuchtigkeit an die Luft verliert. Obwohl man nicht so schnell wie im Hochsommer ins Schwitzen kommt, ist regelmäßiges Trinken also dennoch extrem wichtig! Das Wasser bekämpft nicht nur den Durst, sondern unterstützt auch die Schleimhautbefeuchtung. Dafür kann man sich auch auf eine ausgezeichnete Fernsicht freuen.

Wenig Trinkquellen

Im Herbst sind in mittleren bis großen Höhen nur noch wenige Schneefelder übrig, zudem war die Witterung im Jahr 2018 vielerorts sehr trocken. Aus diesen Gründen gibt es weniger Trinkwasserquellen im Gebirge als üblich, weshalb man bei längeren Touren besonders viel Wasser einpacken muss!

Tageslänge

Das Wetter ist in dieser Jahreszeit oft stabil, weshalb die Bedingungen für lange Touren gut sind. Die Tage werden allerdings immer kürzer, so gibt es selbst in Gipfellagen bei wolkenlosen Bedingungen maximal 10 Stunden Sonnenschein. Bei längeren Touren sollte somit die früh einsetzende Dämmerung berücksichtigt werden und immer eine Stirnlampe eingepackt werden.

Exposition

Der Unterschied zwischen Routen an nordseitigen und südseitigen Hängen ist in dieser Jahreszeit besonders groß. Der erste Schnee im Herbst ist auf sonnenzugewandten Hängen rasch wieder weg, in schattigen Hochlagen sieht dies aber ganz anders aus, selbst wenn die Temperaturen über dem Gefrierpunkt liegen. Das trocknen des Steins dauert zudem wesentlich länger als im Sommer, somit wird Nässe bei manchen Felspassagen zur Gefahrenquelle.

Gletscher
Der Hintereisferner. © foto-webcam.eu

Die Schneebedeckung auf den heimischen Gletschern weist im Herbst übrigens ihr jährliches Minimum auf: Meist sind die bis ins Gipfelniveau aper oder besitzen lediglich eine dünne Altnschneeauflage. Diese trägt nur in seltenen Fällen einen Bergsteiger. Hochtouren sind zwar teils sogar über 3.000 m fast ohne Schneekontakt möglich und die Gletscherspalten oft gut sichtbar, dennoch gehören auch in dieser Jahreszeit Steigeisen, Pickel und Seil zur Standardausstattung bei Touren auf dem ewigen Eis.

Titelbild © N. Zimmermann